Quantized symplectic singularities & applications to Lie theory, Lec 5.

- 1) Harish-Chandra bimodules
- 2) Classification, application & generalization.

1.1) Definition

Let A be a positively graded (\mathbb{Z}_{70} -graded w. $\mathcal{S}_{1} = \mathbb{C}$)
commutative algebra equipped w. a Poisson bracket of deg -d. Let

If be a filtered quantization of A: a filtered associative algebra
graded Bisson algebra isomorphism gr $\mathcal{S}_{1} \xrightarrow{\sim} A$.

Definition: Let B be an A-bimodule.

- 1) By a good filtration on \mathcal{B} we mean an ascending vector space filtration $\mathcal{B} = \bigcup_{i \in \mathbb{Z}} \mathcal{B}_{i,j}$ with the following properties:
 - (i) B= = {03 for some j.
- (ii) $\mathcal{A}_{si}\mathcal{B}_{sj}$, $\mathcal{B}_{sj}\mathcal{A}_{si}\subset\mathcal{B}_{sirj}$ $\forall i,j.$ This shows, in particular, that $gr\mathcal{B}$ is an A-bimodule.
- (iii) $[S_{\epsilon i}, B_{\epsilon j}] \subset B_{\epsilon i+j-d} + i,j$. This shows that the left & right A-actions on gr B coincide, so gr B is A-module.

 (iv) gr B is a finitely generated A-module.
- 2) B is Harish-Chandra (shortly, HC) if it admits a good filtration.

Examples: • The regular bimodule It is HC. • If B is HC, then all of its subs & quotients are.

Remarks: 1) A good filtration is non-unique. Nevertheless, the following is true: if $B = \bigcup B_{ej} = \bigcup B'_{ej}$ are two good filtrations, then $\exists m_n, m_n \in \mathbb{Z}$ s.t $B_{ej-m_n} \subseteq B'_{ej} \subseteq B_{ej+m_n} + j$. Left as exercise.

2) For $S = U(\sigma)$ w. PBW filtration, the two definitions of being HC (above & in Sec 2 of Lec 4) agree. Compare to the proof of Lemma below.

1.2) HC bimodules over quantizations of $C[\widetilde{O}]$

Now suppose that \widetilde{O} is a G-equivariant cover of a nilpotent orbit in og. Let \mathcal{A} be a filtered quantization of $C[\widetilde{O}]$. Recall, Exer 1 in Sec 1.1 of Lec 4, that we have a quantum comment map $P: U(\sigma) \longrightarrow \mathcal{A}$. So every \mathcal{A} -bimodule can be viewed as a $U(\sigma)$ -bimodule.

Lemma: If B is a HC St-bimodule, then it's also HC when viewed as a U(g)-bimodule.

Proof: We have $P(g) \subset \mathcal{A}_{sd}$. By (iii), $[im\ P, \mathcal{B}_{sj}] \subset \mathcal{B}_{sj}$. Since A is positively graded & gr \mathcal{B} is finitely generated over \mathcal{A} , we see that dim $(gr\ \mathcal{B})_j < \infty$. By (i), dim $\mathcal{B}_{sj} < \infty$ + j. So every element in \mathcal{B} is contained in a finite dimensional of-stable subspace. Also (iv)

implies B is finitely generated left A-module. Since $C[\tilde{O}]$ is finite over $C[o_J]$, we see that A is a finitely generated left $U(o_J)$ -module. It follows that B is a finitely generated left $U(o_J)$ -module, hence a HC $U(o_J)$ -bimodule.

2) Classification, application & generalization 2.1) Classification.

Suppose $X:=\operatorname{Spec}(A)$ is a conical symplectic singularity. We write $HC(\mathcal{S})$ for the full subcategory of $Bimod(\mathcal{S})$ consisting of HC bimodules. For $B\in HC(\mathcal{S})$, pick a good filtration on \mathcal{B} and consider Supp $(\operatorname{gr}\mathcal{B})\subset X$ i.e. the subvariety defined by the annihilator of $\operatorname{gr}\mathcal{B}$.

Exercise: 1) Use Remark in Sec 1.1 to show that Supp (gr B) is independent of the choice of a good filtration. We write Supp (B) for Supp (gr B)

2*) Let I be the left annihilator of B. Then Supp (A/I) = Supp (B). Hint: $A/I \longrightarrow End_{gopp}(B)$ & a good filtrin of B induces one on the target.

3) If A is simple, then Supp (B) = X if B = 0.

Definition: The category of HC bimodules with full support, denoted by $\overline{HC}(A)$, is the Serve quotient $\overline{HC}(A):=HC(A)/\{B\mid Supp(B)\neq X\}$

It turns out that $\overline{HC}(\mathcal{S})$ is equivalent to the category of representations of a finite group that is a quotient of the algebraic fundamental group $\mathfrak{R}_{r}^{alg}(X^{reg})$. It can be defined as the pro-finite completion of the usual fundamental group $\mathfrak{R}_{r}(X^{reg})$. It controls the finite etale covers of X^{reg} in the same way $\mathfrak{R}_{r}(X^{reg})$ controls topological covers.

Fact: $\pi^{alg}(X^{reg})$ is finite (Namikawa). Hence $\pi(X^{reg}) \longrightarrow \pi^{alg}(X^{reg})$ and every finite dimensional representation of $\pi(X^{reg})$ factors through $\pi(X^{reg})$.

Examples: 1) Let $\widetilde{O} = G/H$, where G is simply connected, be an equivariant cover of a nilpotent orbit, and $X = \operatorname{Spec} \mathbb{C}[\widetilde{O}]$. Then $\mathfrak{R}(X^{reg}) = \mathfrak{R}(\widetilde{O}) = H/H$, and $\mathfrak{R}^{alg}(X^{reg}) = \mathfrak{R}(X^{reg})$.

2) Let $\Gamma \subset Sp(V)$ be a finite subgroup & X:=V/ Γ . Then $\Re^{alg}(\chi^{reg})=\Re^{alg}(\chi^{reg})=\Gamma$.

In the general case we'll write [for I, alg (X reg).

Thm (I.L. 18): There is a normal subgroup $\Gamma_{\mathfrak{A}} \triangle \Gamma$ s.t. $HC(\mathcal{A}) \xrightarrow{\sim} Rep(\Gamma/\Gamma_{\mathfrak{A}})$

Moreover, under mild assumptions on X, one can recover $\Gamma_{\!f\!f}$ from the quantization parameter of ${\cal S}$, an element of ${\cal S}_X/W_X$.

Example 2: Let $\mathcal{A} = \mathcal{A}_{o}$ be the canonical quantization. Let \widetilde{X}^{o} be cover of X^{reg} corresponding to $\Gamma_{g} \preceq \Gamma$. Set $\widetilde{X} := \operatorname{Spec} \mathbb{C}[\widetilde{X}^{o}]$ so that $\Gamma/\Gamma_{g} \curvearrowright \widetilde{X}$ w. $X = \widetilde{X}/(\Gamma/\Gamma_{g})$. Let L_{g} . Let L_{g} . Let L_{g} be all codim 2 leaves in X and set $X^{\circ} := X^{reg} \coprod_{i=1}^{reg} L_{i}$ so that $\operatorname{codim}_{X} X \upharpoonright X \urcorner Z^{g}$. Assume none of the slices Σ_{i} to L_{i} has type E_{g} . Then \widetilde{X} is the maximal cover of X unramified over $X^{\circ}(\widetilde{X} \to X)$ factors through every other such cover), LMMB'21.

Let Γ' be the Galois group of $\widetilde{X} \to X$. We construct a functor $\operatorname{Rep}(\Gamma') \longrightarrow H(\mathcal{A})$ that then gives rise to the desired equivalence $\operatorname{Rep}(\Gamma') \stackrel{\sim}{\longrightarrow} \overline{HC}(\mathcal{A})$. The variety \widetilde{X} is a conicel symplectic singularity, let $\widetilde{\mathcal{H}}$ be its canonical quantization. The Γ' -action of $C(\widetilde{X})$ extends to $\widetilde{\mathcal{A}}$ & $\mathcal{H}_{\sigma} = \widetilde{\mathcal{H}}_{\sigma}^{\Gamma'}$. To a representation T of Γ' we assign the HC \mathcal{H}_{σ} -bimodule $\mathcal{H}_{\sigma} := (T \otimes \widetilde{\mathcal{H}}_{\sigma})^{\Gamma'}$.

2.2) Application.

The main application (at this point) of the classification thm is to defining and studying unipotent HC bimodules for U(og) — those that should correspond to nilpotent orbits & their covers under the non-existing Orbit method.

Thm/definition (LMBM'21): Let \widetilde{O} be an equivariant cover of a nilpotent orbit in of* & A is the canonical quantization of $C[\widetilde{O}]$. Then A is semisimple as a $U(\sigma)$ -bimodule. The simple direct summands are called unipotent bimodules.

One can say a lot about unipotent bimodules using the general theory. One can describe the annihilators = kernels of $P: U(g) \rightarrow S_0^c$. By Thm in the end of Sec 1.2 of Lec 4, they are maximal ideals. One can compute their "infinitesimal characters," i.e the corresponding points of $\int_0^* |W| dx$. One can show that the unipotent bimodules we given annihilator are classified by irreducible representations of a certain finite group—this is where the classification thm comes into play. Finally, one can show that most of unipotent bimodules are unitarizable.

2.3) Techniques of proof.

There are two key steps:

Step i): Produce a full embedding $\overline{HC}(\mathcal{A}) \hookrightarrow \text{Rep}(\Gamma)$. Both categories are monoidal & so is the functor. It will follow that the image is $\text{Rep}(\Gamma/\Gamma_{f})$ for a unique $\Gamma_{f} \triangleleft \Gamma$.

We will only explain what the functor does to objects. Pick $B \in HC(A)$ and equip it w. a good filtration. The gr B is a finitely generated A-module. But it comes w. an additional structure, a Poisson bracket map $\{:, :: A \times B \rightarrow B \text{ given by } \}$

{ R+ A=i-1, 6+ B=j-, 3: = [R, 6] + B=i+j-d-,

It satisfies usual axioms. So gr B becomes a "Poisson A-module". We view gr B as a coherent sheaf on X. Consider the restriction gr $B|_{X}$ reg. Recall that X^{reg} is a (smooth) symplectic variety.

Fact: Let Z be a smooth symplectic variety & M be a Poisson \mathcal{O}_Z -module. Then M has the unique \mathcal{D}_Z -module structure s.t. for a local function f, the vector field $\{f,\cdot\}$ on Z acts as the bracket w. f w.r.t. the Poisson module structure.

So $(gr B)|_{\chi}$ reg becomes an O-coherent D-module, i.e. a vector bundle w. a flat connection. Pick $x \in \chi^{reg}$. The fiber $(gr B)_{\chi}$ carries a representation of $\Re(\chi^{reg}, \chi)$ that must factor through $\Re(\chi^{reg})$. On objects, our functor is $B \mapsto (gr B)_{\chi}$.

It's not clear from this construction why it's a functor. The actual construction of the full embedding is more involved.

Step ii: We need to figure out when $V \in \text{Rep} \Gamma$ lies in the image. This can be reinterpreted as follows. We can "microlocalize" If to X^{reg} getting, roughly speaking, a sheaf of filtered algebras on X^{reg} , to be denoted by A^{reg} We can still talk about HC bimodules over A^{reg} . Moveover, $V \in \text{Rep} \Gamma$ gives rise to an O-coherent D-module on X^{reg} , hence to a Poisson O_X reg-module. One can uniquely quantite it to a sheaf of A^{reg} - bimodules on X^{reg} to be denoted by B^{reg} .

Our question is when \mathcal{B}_{ν}^{reg} comes as the restriction (="microlo-calization") of a HC A-bimodule. In other words, we need to know when \mathcal{B}_{ν}^{reg} extends to a HC A-bimodule.

A classical fact about coherent sheaves in Algebraic geometry is that one can always extend such a sheaf from an open subvariety to an ambient variety. Sadly, this is not the case for coherent modules over quantizations: it may happen that $\Gamma(\mathcal{B}_{V}^{reg})=\{0\}$. To study the question of when one can extend \mathcal{B}_{V}^{reg} to $\Gamma(\mathcal{B}_{V}^{reg})=\{0\}$ need constructions from Sec 3.2 of Lec 3 recalled in Example 2 in Sec 2.1: $\Gamma(\mathcal{B}_{V}^{reg})=\{0\}$

Let $C: X^{reg} \longrightarrow X^1$ be the inclusion. We need to see for which V the following holds

(*) B_V^{reg} extends "nucly" to X_v^1 i.e. that the sheaf-theoretic pushforward $L_*B_V^{reg}$ is coherent in a suitable sense.

Once this is known, set $\mathcal{B}_{V} = \Gamma(L_{*}\mathcal{B}_{V}^{reg})$. Then we have $\mathcal{B}_{V}|_{\chi^{reg}} \cong \mathcal{B}_{V}^{reg}$. To address (*) we show that the question of when $L_{*}\mathcal{B}_{V}^{reg}$ is coherent around $L_{:}$ can be reduced to a slice $Z_{:}$ to $L_{:}$, the neighborhood of Q in $C^{2}/\Gamma_{:}$. In more detail, let $\chi \in \mathcal{F}_{\chi}$ be the parameter of $\mathcal{F}_{:}$. By Sec 3.2 of Lec 3, $\chi_{:} = \bigoplus_{j=0}^{\infty} \mathcal{F}_{:}^{j}$ w. $\chi_{:} = \chi_{:} = \chi_$

Note that the inclusion $\Sigma_i \hookrightarrow X$ gives rise to the group homomorphism $\Gamma_i = \mathfrak{R}_i^{elg} (\Sigma_i \setminus \{05\}) \xrightarrow{\varphi_i} \mathfrak{R}_i^{alg} (X^{reg}) = \Gamma$. Then \mathcal{B}_i^{reg} is coherent around \mathcal{L}_i iff there's a HC $\mathcal{A}_{i,\lambda_i}$ -bimodule mapping to $\mathcal{G}_i^*(V)$ under our functor. One can analyze the latter as long as Γ_i is not of type E_g (T.L. 2018).

24) Generalization.

One could try to generalize the classification thm in Sec 2.1 to the problem of "quantiting singular lagrangians." Namely, let X be as before. Consider a subvariety $Y \subset X$ satisfying the following:

(i) \forall symplectic leaf $L \subseteq X \Rightarrow Y \cap L \subseteq L$ is isotropic (i.e the restriction of the symplectic form from L to $(Y \cap L)^{reg}$ is zero).

(ii) $\overline{Y \cap X^{reg}} = Y$.

(iii) Y is stable under the contracting C*action. We often impose an additional condition:

(iv) Y is irreducible & codim, Y sing > 2.

Example: Consider the Poisson variety $X \times X^{opp}$ where "opp" means that we multiply $\{:, :\}$ by -1. Then $X_{diag} \subset X \times X^{opp}$ satisfies (i)-(iv).

One could ask to quantize Y (equipped with an additional structure) to a module over a fixed quantization St.

If (iv) holds, then for the additional structure we can take a vector bundle w. a twisted flat connection on Y^{reg} (e.g. in the example there's no twist). We are looking for At-modules M s.t. I "good filtration" on M, the vestriction gr M/yreg is the fixed vector bundle w. twisted flat connection. Such Mis expected to be unique if it exists and the guestion is when it exists. This is expected to be veduced to the case when dim X=4 (and hence dim Y=1).

Using this ideology, I.L. & S. Yn have classified HC module. Over quantizations of C[O], where codim, 20 > 4. If we remove this condition, then (iv) no longer holds and the situation becomes complicated	Using this	ideology, I.L	& S. 1/4 ho	we classified	/ HC modules
this condition, then (iv) no longer holds and the situation becomes	ver quantiza	tions of C	[O] where	codim 20 >	4. If we remove
complicated	this condition	then (iv) no	Conner hold	s and the si-	tuation becomes
impricated	and lind of		cango noca.	outh the st	concentration of the concentra
	compacacea				