EXERCISES FOR LECTURE 4

Section 1.1

Exercise 1. Let L be a connected reductive group, and \mathbb{O}_L be an L-equivariant cover of a nilpotent orbit in \mathfrak{l}^* . Suppose that the degree of the Poisson bracket on $\mathbb{C}[\widetilde{\mathbb{O}}_L]$ is -d so that we have the classical comment map $\varphi : \mathfrak{l} \to \mathbb{C}[\widetilde{\mathbb{O}}_L]_d$. Finally, let \mathcal{A} be a filtered quantization of $\mathbb{C}[\widetilde{\mathbb{O}}_L]$.

1) Show that there is a Lie algebra homomorphism $\Phi : \mathfrak{l} \to \mathcal{A}_{\leq d}$ such that $\varphi = \Phi + \mathcal{A}_{\leq d-1}$. Moreover, show that the additional condition that Φ vanishes on the center $\mathfrak{z}(\mathfrak{l})$ specifies Φ uniquely.

2) Show that the action of L on $\mathbb{C}[\widetilde{\mathbb{O}}_L]$ lifts to a rational G-action on \mathcal{A} by filtered algebra automorphisms such that Φ is a quantum comment map for this action.

Exercise 2. Let \mathcal{A} be an associative algebra equipped with a rational action of an algebraic group R by algebra homomorphisms. Let Φ be a quantum comment map for this action. Show that the space $(\mathcal{A}/\mathcal{A}\Phi(\mathfrak{r}))^R$ carries a unique associative product given by $(a + \mathcal{A}\Phi(\mathfrak{r}))(b + \mathcal{A}\Phi(\mathfrak{r})) = ab + \mathcal{A}\Phi(\mathfrak{r})$. Here a, b are elements of \mathcal{A} such that $a + \mathcal{A}\Phi(\mathfrak{r}), b + \mathcal{A}\Phi(\mathfrak{r})$ are R-invariant.

Section 2

Here \mathfrak{g} is a semisimple Lie algebra over \mathbb{C} .

Exercise. Let V be a finite dimensional representation of \mathfrak{g} . Show that

1) $V \otimes U(\mathfrak{g})$ has a unique \mathfrak{g} -bimodule structure given by $(v \otimes a)x := v \otimes (ax)$ and $x(v \otimes a) = (x.v) \otimes a + v \otimes xa$. Show that this defines a HC $U(\mathfrak{g})$ -bimodule structure on $V \otimes U(\mathfrak{g})$.

2) Moreover, show that any HC $U(\mathfrak{g})$ -bimodule is isomorphic to a quotient of a bimodule of the form described in 1).