Lecture 12: digression on algebraic integers.

1) Basics.
2) Sums \& products of algebraic integers.

Refs: Sec 5.2 in $[E], \operatorname{Sec} 9.5$ in [V].

1) Basics.

In Section 3 of Lee 11 we have mentioned some results on character values that require algebraic integers. The goal of this lecture is to provide necessary background.

Our base field is \mathbb{C}.
1.1) Main definitions.

Definition 1: Let $z \in \mathbb{C}$. We say that z is an algebraic number (resp., algebraic integer) if $\exists a$ monic (leading coefficient 1) polynomial $f(x) \in Q[x]$ (resp. $f(x) \in \mathbb{Z}[x])$ s.t. $f(z)=0$.

Example 1: 0) Every algebraic integer is an algebraic
number.

1) If $z \in \mathbb{Q}$ (resp, $z \in \mathbb{Z}$), then z is an algebraic nim-

Ger (resp. algebraic integer).
2) Every root of unity is an algebraic integer.

Notation: $\overline{\mathbb{Z}} \subset \overline{\mathbb{Q}}$ are sets of algebraic integers \& algebraic numbers.

Definition 2: • By the minimal polynomial of $z \in \bar{Q}$ we mean the (unique) minimal degree (\Leftrightarrow irreducible in $Q[x]$) manic polynomial $f \in \mathbb{Q}[z]$ w. $f(z)=0$.

- The roots of the minimal polynomial of z ave called conjugates of z.

Example 2: Let z be a primitive nth root of 1 . Its minimal polynomial is the cyclotomic polynomial Q_{n} defined inductively $\phi_{1}=x-1 \quad \& \prod_{d / n} P_{\alpha}=x^{n}-1$ (eeg. $\Phi_{p}(x)=x^{\rho-1}+x^{\rho-1}+\ldots+\quad P_{q}(x)=x^{2}+1$). The conjugates of z are precisely the primitive nth roots of 1 .

Lemma: The minimal polynomial of $z \in \overline{\mathbb{Z}}$ is in $\mathbb{Z}[x]$. In particular, all conjugates of z are algebraic integers.

Proof: Let f be an irreducible manic polynomial in $\mathbb{Z}[x] w$. $f(z)=0$. Then f is irreducible in $Q[x]$ (Eisenstein criterion), hence is the minimal polynomial

Corollary: $\overline{\mathbb{Z}} \cap Q=\mathbb{Z}$.

Exercise: 1) Let $\alpha \in \bar{Q}$, and $f(x) \in Q[x]$ satisfy $f(\alpha)=0$. Then f is divisible by the minimal polynomial of α.
2) Let $\alpha \in \overline{\mathbb{R}}, a \in \mathbb{Q}$. If $\alpha_{1}, . . \alpha_{k}$ are all conjugates of α, then $Q \alpha_{1}, \ldots, Q \alpha_{k}$ are all conjugates of $a \alpha_{\text {. }}$.
1.2) Equivalent characterization of algebraic integers. Proposition: for $z \in \mathbb{C}$ TFAE
(a) z is an algebraic integer,
(6) Span $\mathbb{Z}\left(z^{i} / i \geqslant 0\right)$ is a finitely generated abelian group.

Proof:
(a) $\Rightarrow(6)$: Assume (a) holds $\Leftrightarrow \exists n>0, a_{0}, \ldots, a_{n-1} \in \mathbb{Z}$ s.t.

$$
Z^{n}=\sum_{i=0}^{n-1} a_{i} z^{i} \Rightarrow Z^{n+k}=\sum_{i=k}^{n+k-1} a_{i} z^{i+k} \Rightarrow \operatorname{Span}_{z}\left(z^{i} / i \geqslant 0\right)=
$$

Span $_{\pi}\left(z^{i} / 0 \leqslant i \leqslant n-1\right)-$ finitely generated $\Rightarrow(6)$.
$(6) \Rightarrow(a):$ Let $f_{1} \ldots f_{k} \in \mathbb{Z}[x]$ be st. the elements $f_{1}(z), \ldots, f_{k}(z)$ span $S_{p a n}^{7_{z}}\left(z^{i}\right)$. Then if $\alpha=\max _{i}$ deg f_{i}, then $1, z, \ldots, z^{\alpha}$ span $S_{p a n}^{\nless}{ }^{2}\left(z^{i}\right)$. In particular, $z^{\alpha+1}=\sum_{i=0}^{\alpha} a_{i} z^{i}$ for some $i=0, \ldots, \alpha$, which is (a)

We will also need the following fact:

Fact: Every subgroup, Γ^{\prime}, in a finitely generated abelian group Γ is finitely generated.

Proof (when Γ is torsion-free -the only case we need) By the classification of finitely generated abelian groups, $\Gamma \simeq \mathbb{Z}^{k}$ for some k. The base, $k=1$, is left as an exeruse 4
(hint: GCD!). Suppose now that we know the claim for all subgroups of $\mathbb{Z}^{l} w . l<k$. Consider $\mathbb{Z}^{k-1}=\left\{\left(z_{1}, \ldots z_{k-1}, 0\right)\right\}$ $\subset \mathbb{Z}^{k}$. By induction, $\mathbb{Z}^{k-1} \cap \Gamma^{\prime}$ is finitely generated, say by elements $f_{1} \ldots f_{m}$. Next,

$$
\Gamma^{\prime} /\left(\Gamma^{\prime} \cap \mathbb{Z}^{k-1}\right)=\left(\Gamma^{\prime}+\mathbb{Z}^{k-1}\right) / \mathbb{Z}^{k-1} \hookrightarrow \mathbb{Z}^{k} / \mathbb{Z}^{k-1} \leadsto \mathbb{Z} .
$$

Let $\bar{g}_{1}, \ldots \bar{g}_{p}$ be generators of $\Gamma^{\prime}\left(\Gamma^{\prime} \cap \mathbb{Z}^{k-1}\right)$ and let g_{i} be a preimage of \bar{g}_{i} in Γ^{\prime}. Then $f_{1}, \ldots f_{m}, g_{1}, \ldots, g_{p}$ generate Γ^{\prime}, left as an exercise
2) Sums \& products of algebraic integers.

Our goal in this section is to prove the following:

Proposition: Let $\alpha, \beta \in \overline{\mathbb{Z}}$. Then:

1) $\alpha+\beta, \alpha \beta \in \mathbb{Z}$
2) any conjugate of $\alpha+\beta$ is of the form $\alpha^{\prime}+\beta^{\prime}$, where α^{\prime} is a conjugate of α, and β^{\prime} is a conjugate of β.

The analog of 2) holds also for products.
21) Digression²: symmetric polynomials.

Our proof of Proposition is based on the fundamental theorem about symmetric polynomials.

Let R be a commutative (associative unital) ring. An element $f \in R\left[x_{1}, \ldots, x_{n}\right]$ is called symmetric if it doesn't change under any permutation of the variables.

Example: elementary symmetric polynomial $e_{k}=\sum_{i_{1}<\ldots<i_{k}} X_{i_{1}} \ldots x_{i_{k}}$ whose important property is

$$
\prod_{i=1}^{n}\left(z-x_{i}\right)=z^{n}-e, z^{n-1}+e_{2} z^{n-2}+\ldots+(-1)^{n} e_{n} \in \mathbb{Z}\left[z, x_{1}, \ldots x_{n}\right]
$$

Note that symmetric polynomials form an R-subalgebre in $R\left[x_{1}, \ldots x_{n}\right]$ to be denoted by $R\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ (this is indeed the subalgebre of invariants for the S_{n}-action by permutation of variables).

Here's a basic result known as the fundamental theorem

Thu: Every symmetric polynomial can be uniquely written as a polynomial in the elementary symmetric polynomials e_{i}, $i=1,2, \ldots, n$.

Here is an application to the proof of Proposition in Sec 2. Let $x_{1}, \ldots x_{n}, x_{1}^{\prime}, \ldots x_{m}^{\prime}$ be two collections of variables and let $e_{1}, \ldots, e_{n} \& e_{1}^{\prime}, \ldots e_{m}^{\prime}$ be the elementary symmetric polynomials in these variables. Consider the expression:

$$
\begin{equation*}
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(z-x_{i}-x_{j}^{\prime}\right) \in \mathbb{Z}\left[z, x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right] \tag{1}
\end{equation*}
$$

Lemme: For each i, the coefficient, F_{i}, of z^{i} in (1) (a prions, an element of $\left.\mathbb{Z}\left[x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots x_{m}^{\prime}\right]\right)$ is a polynomial in $e_{1}, \ldots, e_{n}, e_{1}^{\prime}, \ldots, e_{m}^{\prime}$ w. coeffes in \mathbb{Z}.

Proof: Let $R_{1}=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and view F_{i} as an element of $R_{1}\left[x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right]$. Note that (1) doesn't change under permuting $x_{1, \prime}^{\prime} . x_{m}^{\prime}$ -so, neither does F_{i}. So $F_{i} \in R_{1}\left[x_{1}^{\prime}, \ldots x_{m}\right]^{S_{m}}=\left[\right.$ Chm for $\left.R_{1}\right]$

$$
\frac{R_{1}\left[\sigma_{1}^{\prime}, \ldots, \sigma_{m}^{\prime}\right]=\mathbb{Z}\left[x_{1}, \ldots x_{n}, \sigma_{1}^{\prime}, \ldots \sigma_{m}^{\prime}\right] .}{7} .
$$

Now let $R_{2}=\mathbb{Z}\left[\sigma_{1}^{\prime \prime}, \sigma_{m}^{\prime \prime}\right]$. Since (1) is also S_{n}-invariant, so is F_{i} viewed as an element of $R_{2}\left[x_{1}, \ldots, x_{n}\right]$. So by The, applied to R_{2}, we see that $F_{i} \in R_{2}\left[\sigma_{1}, \ldots, \sigma_{n}\right]=\mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}^{\prime}, \sigma_{1}^{\prime}, \ldots, \sigma_{m}^{\prime}\right]$

We can also consider

$$
\begin{equation*}
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(z-x_{i} x_{j}^{\prime}\right) \in \mathbb{Z}\left[z, x_{1}, \ldots, x_{n}, x_{1,1}^{\prime}, x_{m}^{\prime}\right] \tag{2}
\end{equation*}
$$

The coefficients of z^{i} are again in $\mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}, \sigma_{1}^{\prime}, \ldots, \sigma_{m}^{\prime \prime}\right]$.
2.2) Proof of Proposition.

We will prove 2) \& the part of 1) about the sum.
Let $f, g \in \mathbb{Z}[x]$ be the minimal polynomials of α, β, respectively.

$$
f(x)=x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2} \ldots+(-1)^{n} a_{n}, g(x)=x^{n}-\sigma_{1} x^{n-1}+b_{2} x^{n-2}+(-1)^{m} b_{m}, a_{i} ; b_{j} \in \mathbb{Z}
$$

Let $\alpha_{1}=\alpha_{1} \ldots \alpha_{n}$, be the conjugates of α so that $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$, and $\beta_{1}=\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ be the conjugates of β so that $g(x)=\prod_{j=1}^{m}\left(x-\beta_{j}\right)$.

Consider the polynomial $h(x)=\prod_{i=1}^{n} \prod_{j=1}^{m}\left(x-\alpha_{i}-\beta_{j}\right) \in \mathbb{C}[x]$. If we know that the coefficients are in \mathbb{Z} we are done: $h(x)$ has $\alpha+\beta$ as a root and it's monic, so $\alpha+\beta \in \mathbb{Z}$. And $h(x)$ is divisible by the minimal polynomial of $\alpha+\beta$ (Exercise in Sec 1.1). So every conjugate of $\alpha+\beta$ is e root of h_{1} hence $\alpha_{i}+\beta_{j}$.

So we need to show $h(x) \in \mathbb{Z}[x]$. But note that $h(x)=x^{m n}+F_{m n-1}\left(\alpha_{1}, \ldots \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right) x^{m n-1}+\ldots+F_{0}\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1} \ldots, \beta_{m}\right)$, where $F\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right) \in \mathbb{Z}\left[x_{1}, \ldots x_{n}, x_{1}^{\prime}, \ldots x_{m}^{\prime}\right]$. By Lemma in the previous section, F is a polynomial of $e_{1}, \ldots, e_{n}, e_{1}^{\prime}, \ldots, e_{m}^{\prime} w$. integral coefficients.

So $F_{i}\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right)$ is a polynomial w. integral coefficients evaluated at $a_{i}=e_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z} \& \sigma_{j}=e_{j}^{\prime}\left(\beta_{1}, \ldots, \beta_{m}\right) \in \mathbb{Z}$. So $F_{i}\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right) \in \mathbb{Z}$, finishing the proof for sums

To show $\alpha \beta \in \overline{\mathbb{Z}}$ we use the direct analog of Lemme for
(2)

Remark: By Proposition, $\overline{\mathbb{}}$ is a subring of \mathbb{C}. And one can also show that $\bar{Q} \subset \mathbb{C}$ is a subfield.

