Lecture 15, Induced representations.

0) Recap & plan 1) Proof of Frobenius reciprocity. 2) Character formula for the induced representation. Ref: Secs 5.8-5.10 in [E]

0) Recap & plan Let IF be a field, HCG be finite groups and U be a (finite dimensional) representation of H. In Sec 1.1 of Lec 14 we have constructed the induced representation of G: $\operatorname{Ind}_{H}^{G} \mathcal{U} \left(= \operatorname{Map}_{H}(G, \mathcal{U})\right) = \left\{ \varphi: G \longrightarrow \mathcal{U} \mid \varphi(gh^{-1}) = h_{\mathcal{U}} \varphi(g) \right\}$ w. $[q_1, \varphi](q) = \varphi(q_1^{-1}q).$ In Sec 2.1 of Lec 14, we have stated the important property, the Frobenius reciprocity: for (finite dimensional) representations U of H& V of C we have a natural vector space isomorphism Rest U Hom_G (V, Ind_H^G U) —> Hom_H (V, U) (*) 1

The plan for this lecture is as follows: · Prove Frobenius reciprocity. · State & prove the Frobenius formule for the characters of induced representations. · Make curious observations about representations of the form Ind 5, triv & Inds, sqn for n=4 that will be generalized to arbitrary 11 after the break leading to the classification of irreducible representations of Sn.

1) Proof of Frobenius reciprocity_ · First, we construct a map in (*). Define the map ev: $\operatorname{Ind}_{H}^{\mathcal{L}} \mathcal{U} = \operatorname{Map}_{H}(\mathcal{L}, \mathcal{U}) \longrightarrow \mathcal{U}, ev(\varphi) := \varphi(e)$ We claim that it is a homomorphism of representations of H: $ev(h, \varphi) = [h, \varphi](e) = \varphi(h') = [\varphi \text{ is equivariant}] = h_{\mu}, \varphi(e).$ Now our map (*) is y t evoy. Since ev & y are homomorphisms of representations of H, so is their composition. Hence we indeed get a well-defined linear map in (*). • Now we are going to construct an inverse. Let $\gamma \in$ 21

Hom, (V, U). We are going to define y: V -> Map, (G, U). We do this by $[\psi_{n}(v)](g) := p(g^{-1}v)$. We need to check that • $\psi_{\mathcal{L}}(v) \in Map_{\mathcal{H}}(\mathcal{L},\mathcal{U}) \iff [\psi_{\mathcal{L}}(v)](gh^{-1}) = h_{\mathcal{U}}([\psi_{\mathcal{L}}(v)](g))$ $[\psi_{p}(v)](gh^{-1}) = p(h_{v}g_{v}^{-1}\sigma) = h_{u}p(g_{v}^{-1}\sigma) = h_{u}([\psi_{p}(v)](g)) \quad V$ • ψ_{r} is ζ -equivariant: $\psi_{r}(g'_{v}v) = g'_{Map_{u}}(\zeta_{v}u) \psi_{r}(v), \forall g' \in G.$ $\Psi_{\mathcal{A}}(q_{\mathcal{V}}' v)(q) = \mathcal{P}(q_{\mathcal{V}}' q_{\mathcal{V}}' v)$ $\left[g'_{Map_{y}}(\zeta, U) \quad \psi_{Z}(v)\right](g) = \left[\psi_{Z}(v)\right](g'^{-1}g) = \psi\left(g^{-1}g'_{V}v\right) - checked.$ · We need to show that p +> y & y +> evoy are inverse to each other: evoy=2 & yevoy=4. $ev \circ \psi_{p}(v) = [\psi_{p}(v)](e) = \psi(v)$. V. $\left[\psi_{ev\circ\psi}(\upsilon) \right](q) = ev\left(\psi\left(q_{v}^{-\prime}\upsilon\right) \right) = \left[\psi\left(q_{v}^{-1}\upsilon\right) \right](e) = \left[\psi is \ \mathcal{L}-equivit \right]$ $= [\psi(v)](q) \implies \psi_{ev\circ\psi} = \psi$

2) Character formula for the induced representation. 2.1) Main result. Let qi, i=1,..., l, be representatives of the cosets in G/H, so that l= G/H. Every element of G is uniquely written as <u>g;h-1, i=1,...l, heH</u> 31

Theorem (Frobenius) $\begin{array}{l} X_{Ind_{H}}(g) = \sum_{i \mid g_{i}^{-1}gg_{i} \in H} X_{u}\left(g_{i}^{-1}gg_{i}\right) \\ Proof: \quad For \quad i=1,...,l, let \end{array}$ (1) $Map_{H}(G,U)_{i} = \{\varphi \in Map_{H}(G,U) \mid \varphi(g;h^{-1}) = 0 \text{ if } j \neq i \}$ We have $Map_{H}(\mathcal{C}, \mathcal{U})_{i} \xrightarrow{\sim} \mathcal{U}, \varphi \mapsto \varphi(q_{i})$ & $Map_{H}(\zeta, U) = \bigoplus Map_{H}(\zeta, U)_{i}$ compare to Sec 1.2 in Lec 14. Under the identification $M_{ap_{H}}(\zeta, U) = \bigoplus^{e} M_{ap_{H}}(\zeta, U)_{i} \xrightarrow{\sim} U^{Ol}$ We can view $g_{Map_{\mu}(\zeta, u)} \in End(U^{\oplus e})$ as an $l \times l - matrix d_{ij}(g)$ w. $d_{ij}(q) \in End(U): g_{Map_{\mu}(G,U)}(U_{1},...,U_{\ell}) = (\sum_{i=1}^{\ell} d_{ij}(q)U_{i})_{i=1}^{\ell}$. So $\mathcal{X}_{Ind_{ii}}(q) = \sum_{i=1}^{n} tr d_{ii}(q).$ (2) So we need to determine $d_{ii}(q)$. Let $q \in Map_{H}(G, U)_{i}$. Then $[q.\varphi](q;h^{-1}) = \varphi(q^{-1}q;h^{-1})$. Note that $(\widehat{\mathbf{v}}) \quad \widehat{\mathbf{g}}^{-1} \widehat{\mathbf{g}}_{i} \stackrel{h^{-1} \in \widehat{\mathbf{g}}_{i} \stackrel{H \iff}{=} \widehat{\mathbf{g}}_{i} \stackrel{f^{-1}}{=} \widehat{\mathbf{g}}_{i} \stackrel{f^{-1}}{=} \widehat{\mathbf{g}}_{i} \stackrel{f^{-1} \in \widehat{\mathbf{g}}_{i} \stackrel{g^{-1}}{=} \widehat{\mathbf{g}}_{i} \stackrel{g^{-1}}}{=} \widehat{\mathbf{g}}_{i} \stackrel{g^{-1}}{=} \widehat{\mathbf{g}}_{i} \stackrel{g^{-1}}{=}$ If (8) doesn't hold, then dii (97=0. If (8) holds then $q. \varphi \in Mep_{H}(G, U)_{i} \& under the identification <math>Mep_{H}(G, U)_{i} \xrightarrow{\sim} U,$ $g.\varphi \mapsto [g.\varphi](g_i) = \varphi(g^-g_i) = \varphi(g, g^-g^-g_i) = (g^-g_i)_{\mathcal{U}} \varphi(g_i).$ $\frac{d_{ii}(g) = (g_i^{-1}g_i^{-1}g_i)_{\mathcal{U}} \Rightarrow frd_{ii}(g) = \lambda_{\mathcal{U}}(g_i^{-1}g_i^{-1}g_i) \Rightarrow r.h.s \text{ of } (2) = r.h.s \text{ of } (1) \square$

2.2) Examples & applications. Example 1: Suppose U is the 1-dimensional trivial represen. tation. As we have seen in Sec 1.1 of Lec 14, $Ind_{H}^{G} U \xrightarrow{\sim} Fan(G/H, \mathbb{F})$ By Sec 2.1 of Lec 8, X Fun (G/H, F) (g) = # {x \in C/H | q.x = x} = # $\{i \in \{1, ..., l\} \mid g^{-1}g_i \in g_i H \iff g_i^{-1}g_i \in H \}$. This agrees w. Thm. Example 1: Let's use (1) to decompose V:= Ind H triv w. H={1, h} into the direct sum of irreducibles (that also can be done using the techniques of Sec 2.2 in Lec 14). Here we assume char F=0 & F is algebraically closed. Since char F=0, for general (H,U) the r.h.s. in (1) can be rewritten as $\frac{1}{|H|} \sum_{\substack{\kappa \in G \mid \kappa^{-1}g \kappa \in H}} J_{U}(\kappa^{-1}g \kappa), \text{ (note that } g_{i}g_{i}g_{i} \in H \Leftrightarrow \kappa^{-1}g \kappa \in H \notin \kappa \in g_{i}H)$ Back to $H = \{1, h\} \notin U = triv, note: J_{V}(g) = 0 \text{ unless } g = e,$ In which case $X_{V}(e) = \dim V = \frac{1}{2}|G|$, or g is conjugate (in G) to h, where $X_{V}(g) = X_{V}(h) = \frac{1}{2} |\{ \kappa \in G \mid \kappa^{-1}h\kappa = h \}| = \frac{1}{2} |Z_{C}(h)|.$ Let W be an irreducible representation of G. Recell (see Application 2 in Sec 1 of Lec 11) that the multiplicity of

W in V equals $(X_W, X_V) = \frac{1}{|G|} \sum_{g \in G} X_W(g) X_V(g^{-1})$. Let $C = \{gh_G^{-1} | g \in G\}$ so that $|C| = |G|/|Z_G(h)|$. Then $(X_{W}, X_{V}) = \frac{1}{|G|} \left(\frac{X_{W}(e)}{2} + \frac{|G|}{2} + \frac{|G|}{2} \frac{1}{|Z_{G}(h)|}{|Z_{G}(h)|} \right) = \frac{1}{|G|} \frac{1}{|Z_{G}(h)|}{|X_{W}(e)} = \frac{1}{|G|} \frac{1}{|X_{W}(e)|}{|X_{W}(e)|} + \frac{1}{|G|} \frac{1}{|Z_{G}(h)|}{|Z_{G}(h)|} = \frac{1}{|G|} \frac{1}{|X_{W}(e)|}{|X_{W}(e)|} + \frac{1}{|G|} \frac{1}{|Z_{G}(h)|}{|Z_{G}(h)|} = \frac{1}{|G|} \frac{1}{|X_{W}(e)|}{|X_{W}(e)|} + \frac{1}{|G|} \frac{1}{|Z_{G}(h)|}{|Z_{G}(h)|} = \frac{1}{|G|} \frac{1}{|X_{W}(e)|}{|X_{W}(e)|} + \frac{1}{|G|} \frac{1}{|Z_{G}(h)|}{|X_{W}(e)|} = \frac{1}{|G|} \frac{1}{|X_{W}(e)|}{|X_{W}(e)|} + \frac{1}{|G|} \frac{1}{|X_{W}(e)|}{|X_{W}(e)|} + \frac{1}{|X_{W}(e)|}{|X_{W}(e)|}{|X_{W}(e)|} + \frac{1}{|X_{W}(e)|}{|X_{W}(e)|}{|X_{W}(e)|} + \frac{1}{|X_{W}(e)|}{|X_{W}(e)|}{|X_{W}(e)|} + \frac{1}{|X_{W}(e)|}{$

 $=\frac{1}{2}(\dim W + X_{W}(h)).$ Now apply this to G=S4 & H=S2= {e, (12)}. We use the character table for Sq from Sec 2.2 of Lec 8 to conclude Ind s^{S_4} triv $\simeq triv \oplus (F_{\bullet}^{\bullet})^{\oplus} V_{\bullet} \oplus s_{gn} \otimes F_{\bullet}^{\bullet}$

And here's an application of Theorem.

Lemma (tensor identity): Suppose F is algebraically closed field of char O. Let U& V be finite dimensional representations of H& C, respectively. We have $V \otimes \operatorname{Ind}_{H}^{G} (V \otimes U),$ — Res. V an isomorphism of representations of G.

Proof: Recall, Application 1 in Sec 1 of Lec 11, that two

representations are isomorphic if their characters are equal. $X_{V \otimes Ind_{H}}(g) = [Sec 1.5 \text{ or Addendum of } Lec 11] = X_{V}(g) X_{Ind_{H}}(g)$ $\mathcal{X}_{Ind_{H}^{G}}(V \otimes u) \begin{pmatrix} g \end{pmatrix} = \underbrace{\sum}_{i \mid g_{i}^{-1} g g_{i} \in H} \mathcal{X}_{V \otimes u} \begin{pmatrix} g^{-1} g g_{i} \end{pmatrix} = \underbrace{\sum}_{i \mid g_{i}^{-1} g g_{i} \end{pmatrix} \mathcal{X}_{u} \begin{pmatrix} g^{-1} g g_{i} \end{pmatrix}$ $= \left[\mathcal{X}_{\mathcal{V}}\left(q_{i}^{-\prime}qq_{i}\right) = \mathcal{X}_{\mathcal{V}}\left(q\right) \right] = \mathcal{X}_{\mathcal{V}}\left(q\right) \sum_{\dots} \mathcal{X}_{\mathcal{U}}\left(q_{i}^{-\prime}qq_{i}^{-\prime}\right) = \mathcal{X}_{\mathcal{V}}\left(q\right) \mathcal{X}_{Ind_{\mathcal{H}}}\left(q\right) \square$ Kemark 1: The conclusion holds w/o restriction on IF but the argument needs a few things from category theory. It's based on the following natural isomorphisms: Hom_c (V, Ind_H (V&U)) ~> [Frobenius reciprocity] Hom_H (V, V&U) ~ [tensor-Hom adjunction] Hom, (V&V,*U) ~ [Frobenius reciprocity] Hom (V&V, Ind, U) ~ [tensor-Hom adjunction] $Hom_{G}(V, V \otimes Ind_{H}^{G}U)$

Remark 2: Theorem has a fun application to the structure theory of finite groups. Let G be a finite group. By a trobenius complement we meen a subgroup HCG which is "as Far from being normal as possible": HAgHg-'= {e3 & g \in G \ H. 7]

Consider the subset $K := (G \cup gHg^{-1}) \cup \{e\}$. Then it is a sub-geG of $g \in G$ of $g \in G$. group (automatically normal) - this was proved by Frobenius.

2.3) Curious observations about Inds, triv, Inds, sgn. Here's a complete list of decompositions of Ind³⁴ triv into irreducibles. As before, IF is algebraically closed & char IF = 0. · $\lambda = (4)$: Ind so triv = triv • $\lambda = (3,1)$: Ind $S_{3}^{S_{4}}$ triv = Fun $(S_{4}/S_{3}, F) = [S_{4}/S_{3} \xrightarrow{\sim} \{1,2,3,4\},$ exercise] = F⁴ = [Lemma in Sec 1.2 of Lec 5] = triv ⊕ F₀⁴ permutation rep

• $\lambda = (2,2)$: Ind $S_{\lambda}^{S_4}$ triv = triv $\oplus \mathbb{F}_{2}^{4} \oplus V_{2}$, Sec 2.1 of Lec 14. • $\lambda = (2, 1, 1)$: Ind $S_{\lambda}^{S_4}$ triv = triv $\oplus (\mathbb{F}^4)^{\oplus 2} \oplus V_2 \oplus sgn \otimes \mathbb{F}^4$, Example 1. • $\lambda = (1, 1, 1, 1)$: Ind $S_{4}^{S_4} = Fun(G, \mathbb{F}) = [regular representation, see Thm]$ in Sec 1.1 of Lec \mathcal{F}] = triv $\oplus (\mathbb{F}^4)^{\textcircled{}} \oplus \mathbb{V}_2^{\textcircled{}} \oplus (\operatorname{sgn} \otimes \mathbb{F}^4)^{\textcircled{}} \oplus \operatorname{sgn}$.

We record this as a table, where rows correspond to Inds, triv, columns to the irreducibles & the entries are the multiplicities (we skip 0.s)

Table	1: Deco	mpositions	of Inds	s, triv:		
2 V	triv	Fo ⁴	Vz	sgn⊗F₀4	sgh	
4	1					
(3,1)	1	1				
(2,2)	1	1	1			
(2,1,1)	1	2	1	1		
(1,1,1,1)	1	3	2	3	1	
•	We Drocee	d to Ind	, 54 15 S9N U	where by the	sign repre	sente-
Now we proceed to $Ind_{S_{\lambda}}^{S_{4}}$ sgn, where by the sign representetion of S_ we mean the restriction of sgn from S_4. By Lemma						
in Sec 2.2 (tensor identity), we have $Ind_{S_{\lambda}}^{S_{4}} sgn \simeq sgn \otimes Ind_{S_{\lambda}}^{S_{4}} triv.$						
~	. /	following t	•			6,00
	0	v		S4 San		
2 V	triv	E ⁴		^{S₄} Sgn _S _λ Sgn⊗F _s ⁴	sgh	1
	1	3	2	3	1	
(1,1,1,1) (2,1,1)		1	1	2	1	
(2, 2, 7)			1	1	1	
(3, 1)				1	1	
(4)					1	
9			I	I	[Į