Lecture 15, Induced representations.
0) Recap \& plan

1) Proof of Frobenius reciprocity.
2) Character formula for the induced representation.

Ref: Secs 5.8-S.10 in [E]
Section 2.1 significantly modified on $3 / 9$.
0) Recap \& plan

Let IF be a field, $H \subset G$ be finite groups and U be a (finite dimensional) representation of H. In Sec 1.1 of Lec 14 we have constructed the induced representation of C :

$$
\begin{aligned}
& \operatorname{In}_{H}^{C} U\left(=\operatorname{Map}_{H}(G, U)\right)=\left\{\varphi: G \rightarrow U \mid \varphi\left(g h^{-1}\right)=h_{U} \varphi(g)\right\} \\
& \text { w. }\left[g_{1} \cdot \varphi\right](g)=\varphi\left(g_{1}^{-1} g\right) .
\end{aligned}
$$

In Sec 2.1 of Lee 14, we have stated the important property, the Frobenius reciprocity:
for (finite dimensional) representations U of $H \& V$ of G we have a natural vector space 1 isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{G}\left(V, \operatorname{Ind}_{H}^{G} U\right) \longrightarrow \operatorname{Hom}_{H}(V, U) \tag{*}
\end{equation*}
$$

The plan for this lecture is as follows:

- Prove Frobenius reciprocity.
- State \& prove the Frabenius formula for the characters of induced representations.
- Make curious observations about representations of the form Ind ${ }_{S_{\lambda}}^{s_{n}}$ riv \& $\operatorname{Ind}_{S_{\lambda}}^{s_{n}}$ ign for $n=4$ that will be generalized to arbitrary n after the break leading to the classification of irreducible representations of S_{n}.

1) Proof of Frobenius reciprocity

- First, we construct a map in (*). Define the map

$$
e v: \operatorname{Ind}_{H}^{C} U=\operatorname{Map}_{H}(\zeta, U) \rightarrow U, \operatorname{ev}(\varphi):=\varphi(e)
$$

We claim that it is a homomorphism of representations of H :

$$
e v(h . \varphi)=[h . \varphi](e)=\varphi\left(h^{-1}\right)=\left[\varphi \text { is equivariant } t=h_{u} \varphi(e) .\right.
$$

Now our map (*) is $\psi \mapsto e v o \psi$. Since er \& ψ are homomorphisms of representations of H, so is their composition. Hence we indeed get a well-defined linear map in (*).

- Now we are going to construct an inverse. Let $\eta \in$
$\operatorname{Hom}_{H}(V, U)$. We are going to define $\psi_{i}: V \rightarrow \operatorname{Map}_{H}(G, U)$. We do this by $\left[\psi_{\eta}(v)\right](g):=\eta\left(g_{v}^{-1} v\right)$. We need to check that

$$
\begin{gathered}
\cdot \psi_{\eta}(v) \in M_{o \rho_{H}}\left(G_{1} u\right) \Leftrightarrow\left[\psi_{\eta}(v)\right]\left(g h^{-1}\right)=h_{u}\left(\left[\psi_{\eta}(v)\right](g)\right) . \\
{\left[\psi_{\eta}(v)\right]\left(g h^{-1}\right)=\eta\left(h_{v} g_{v}^{-1} v\right)=h_{u} \eta\left(g_{v}^{-1} v\right)=h_{u}\left(\left[\psi_{\eta}(v)\right](g)\right) \quad v}
\end{gathered}
$$

- ψ_{η} is S-equivariant: $\psi_{\eta}\left(g_{V}^{\prime} v\right)=g_{M_{H} p_{H}(\zeta, u)} \psi_{Z}(v), \forall g^{\prime} \in G$.

$$
\begin{aligned}
& \psi_{\eta}\left(g_{v}^{\prime} v\right)(g)=\eta\left(g_{v}^{-1} g_{v}^{\prime} v\right) \\
& {\left[g_{\operatorname{Map}_{H}(c, u)}^{\prime} \psi_{\eta}(v)\right](g)=\left[\psi_{\eta}(v)\right]\left(g^{\prime-1} g\right)=\eta\left(g_{v}^{-1} g_{v}^{\prime} v\right) \text {-checked. }}
\end{aligned}
$$

- We need to show that $\eta \mapsto \psi_{\eta} \& \psi \mapsto e v o \psi$ ave inverse to each other: $e v \circ \psi_{\eta}=\eta$ \& $\psi_{\text {evou }}=\psi$.

$$
\begin{aligned}
& e v \circ \psi_{\eta}(v)=\left[\psi_{\eta}(v)\right](e)=\eta(v) \\
& {\left[\psi_{e v \circ \psi}(v)\right](g)=e v\left(\psi\left(g_{v}^{-1} v\right)\right)=\left[\psi\left(g_{v}^{-1} v\right)\right](e)=[\psi \text { is } G \text {-equiv't }]} \\
& =[\psi(v)](g) \Rightarrow \psi_{e v o u}=\psi
\end{aligned}
$$

2) Cherecter formula for the induced representation.
2.1) Main result.

Let $g_{i}, i=1, \ldots, l$, be representatives of the cosets in G / H, so that $l=|G| H \mid$. Every element of G is uniquely written as ${ }_{3} g_{i} h^{-1}, i=1, \ldots l, h \in H$.

Theorem (Frobenius)

$$
\begin{equation*}
X_{I n d_{H}^{G} u}(g)=\sum_{i\left(g_{i}^{-1} g g_{i} \in H\right.} X_{u}\left(g_{i}^{-1} g g_{i}\right) \tag{1}
\end{equation*}
$$

Proof:
In the proof well use the following observation. Let V be a finite dimensional vector space w. direct sum decomposition $V=U, \oplus \ldots \oplus U_{l}$. Let $\alpha \in E n d(V)$. For $i, j=1, \ldots, l$, set $\alpha_{i j}:=\pi_{i} \circ \alpha l_{u_{j}}$, where $\pi_{i}: V \longrightarrow U_{i}$ is the projection. Then

$$
\begin{equation*}
\operatorname{tr} \alpha=\sum_{i=1}^{e} \operatorname{tr} \alpha_{i i} \tag{t}
\end{equation*}
$$

We apply this to: $V=\operatorname{Map}_{H}(G, U), \alpha:=g_{V}$, and the spaces $U_{i}:=\left\{\varphi \in \operatorname{Map}_{H}(G, U) \mid \varphi(g) \neq 0 \Rightarrow g \in g_{i} H\right\}, i=1, \ldots, l$. Note that $\pi_{i}(\varphi)$ is the map that coincides $w . \varphi$ on $g_{i} H$ and is O on the other coset.

Recall that for $g \in C$, we have $[g . \varphi]\left(g_{i} h^{-1}\right)=\varphi\left(g^{-1} g_{i} h^{-1}\right)$. Suppose $\varphi \in U_{i}$. If $g^{-1} g_{i} \notin g_{i} H$, then $\varphi\left(g^{-1} g_{i} h^{-1}\right)=0$, so $\pi_{i}(g \cdot \varphi)=$ 0. The condition $g^{-1} g_{i} \in g_{i} H$ is equivalent to $g_{i}^{-1} g^{-1} g_{i} \in H \Leftrightarrow$ $g_{i}^{-1} g g_{i} \in H$. From (t) we conclude $X_{V}(g)=\operatorname{tr} \alpha=\sum_{i \mid g_{i}^{-1} g_{i} \in H} \operatorname{tr} \alpha_{i i}$

So, we need to prove that if $g_{i}^{-1} g g_{i} \in H$, then $\operatorname{tr} \alpha_{i i}=X_{u}\left(g_{i}^{-1} g g_{i}\right)$. 4

Note that the map $\varphi \mapsto \varphi\left(g_{i}\right)$ identifies $U_{i} w . U$ (compare to Sec 1.2 of Lee 14). We claim that, under this identification, $\alpha_{i i}$ coincides with $\left(g_{i}^{-1} g_{i}\right)_{u} \Leftrightarrow\left[\alpha_{i i}(\varphi)\right]\left(g_{i}\right)=\left(g_{i}^{-1} g g_{i}\right)_{u} \varphi\left(g_{i}\right)$ this will finish the proof: if $c: U \xrightarrow{\sim} U^{\prime}$ is an isomorphism of finite dimensional vector spaces \& $\beta \in \operatorname{En} \alpha(u), \alpha \in E n d\left(U^{\prime}\right)$ satisfy $c \beta=\alpha \circ l$, then $\operatorname{tr}(\alpha)=\operatorname{tr}\left(c o \beta \circ 0^{-1}\right)=\operatorname{tr}(\beta)$.

Let $\varphi \in U_{i}$. Then the image of $\alpha_{i i}(\varphi)$ in U is

$$
\begin{aligned}
& {\left[\alpha_{i i}(\varphi)\right]\left(g_{i}\right)=\left[\left.\alpha_{i i}(\varphi)\right|_{g_{i} H}=\left.g \cdot \varphi\right|_{g_{i} H}\right]=[g \cdot \varphi]\left(g_{i}\right)=\varphi\left(g^{-1} g_{i}\right)=} \\
= & \varphi\left(g_{i}\left(g_{i}^{-1} g g_{i}\right)^{-1}\right)=\left[g_{i}^{-1} g g_{i} \in H \& \varphi\left(g_{i} h^{-1}\right)=h_{u} \cdot \varphi\left(g_{i}\right)\right]=
\end{aligned}
$$

$=\left(g_{i}^{-1} g g_{i}\right)_{u} \cdot \varphi\left(g_{i}\right)$, which gives (2) and finishes the proof

Remark: suppose that $|H|$ is invertible in \mathbb{F}. Then we can rewrite (1) as

$$
X_{I_{n n} d_{H}^{c} u}(g)=\frac{1}{|H|} \sum_{k \in G \mid k^{-g} k \in H} X_{U}\left(k^{-1} g k\right)
$$

This is because for $k=g_{i} h^{-1}$, we have $k^{-1} g k=h\left(g_{i}^{-1} g g_{i}\right) h^{-1}$, so $X\left(k^{-1} g k\right)=X\left(g_{i}^{-1} g g_{i}\right)$ and therefore the sum in (11) is $|H|$ times the sum in (1). Sometimes, $\left(1^{\prime}\right)$ is more convenient $6 / \mathrm{c}$ it does not involve artificial choices.
2.2) Examples \& applications.

Example 1: Suppose U is the 1-dimensional trivial represen. tation. As we have seen in $\operatorname{Sec} 1.1$ of Lec 14,

$$
\operatorname{In} \alpha_{H}^{G} U \xrightarrow{\sim} \operatorname{Fun}(G / H, \mathbb{F})
$$

By $\operatorname{Sec} 2.1$ of $\operatorname{Lec} 8, X_{\text {Fun }(G / H, F)}(g)=\mid\{x \in[|H| g \cdot x=x\} \mid=$ $\left|\left\{i \in\{1, \ldots, l\} \mid g^{-1} g_{i} \in g_{i} H \Leftrightarrow g_{i}^{-1} g g_{i} \in H\right\}\right|$. This agrees w. The.

Example 1': Let's use (1) to decompose $V:=\operatorname{In} \alpha_{H}^{G}$ riv w. $H=\{1, h\}$ into the direct sum of irreducibles (that also can be done using the techniques of $\operatorname{Sec} 2.2$ in Lec 14). Here we assume char $\mathbb{F}=0$ \& \mathbb{F} is algebraically closed. In particular, we can use (1').

Back to $H=\{1, h\} \& U=$ triv, note: $X_{V}(g)=0$ unless g is conjugate to 1 or h. In the 1 st case $g=e \Rightarrow X_{V}(e)=\operatorname{dim} V=$ $\left.|G| H\left|=\frac{1}{2}\right| G \right\rvert\,$. In the Ind case,

$$
X_{V}(g)=X_{V}(h)=\frac{1}{2}\left|\left\{k \in G \mid k^{-1} h k=h\right\}\right|=\frac{1}{2}\left|Z_{C}(h)\right| .
$$

Let W be an irreducible representation of G. Recall (see Application 2 in Sec 1 of Lec 11) that the multiplicity of 6
W in V equals $\left(X_{W}, X_{V}\right)=\frac{1}{|G|} \sum_{g \in G} X_{W}(g) X_{V}\left(g^{-1}\right)$.
Let $C=\left\{g_{g} g^{-1} \mid g \in G\right\}$ so that $|C|=|G| /\left|Z_{G}(h)\right|$.
Then $\left(X_{W}, X_{V}\right)=\left[h=h^{-1}\right]=\frac{1}{|G|}\left(\left.\frac{X_{W}(e)}{\operatorname{dim} W} \frac{|G|}{2}+\underset{\text { product is }|G|}{|C|}\left|X_{W}(h) \frac{1}{2}\right| Z_{G}(h) \right\rvert\,\right)=$ $=\frac{1}{2}\left(\operatorname{dim} W+X_{W}(h)\right)$.

Now apply this to $G=S_{4} \& H=S_{2}=\{e,(12)\}$. We use the character table for S_{4} from $\operatorname{Sec} 2.2$ of $\operatorname{Lec} 8$ to conclude

And here's an application of Theorem.

Lemme (tensor identity): Suppose \mathbb{F} is algebraically closed field of char 0 . Let U \& V be finite dimensional representtions of $H \& G$, respectively. We have

$$
V \otimes \operatorname{In} \alpha_{H}^{G} U \xrightarrow{\sim} \operatorname{In} \alpha_{H}^{G}(V \otimes U), \operatorname{Res}_{H}^{G} V
$$

an isomorphism of representations of ζ.

Proof: Recall, Application 1 in Sec 1 of Lee 11, that two 7
representations are isomorphic if their characters are equal.

$$
\begin{aligned}
& X_{V \otimes I n \alpha_{H}^{G} u(g)}=\left[S e c 1.5 \text { or } A d \text { dendum of Lect 11] }=X_{V}(g) X_{I n \alpha_{H}^{G} u(g)}\right. \\
& X_{I n d_{H}^{G}(V \otimes u)}(g)=\sum_{i \mid g_{i}^{-1} g g_{i} \in H} X_{V \otimes u}\left(g_{i}^{-1} g g_{i}\right)=\sum X_{V}\left(g_{i}^{-1} g g_{i}\right) X_{U}\left(g_{i}^{-1} g g_{i}\right) \\
& =\left[X_{V}\left(g_{i}^{-1} g g_{i}\right)=X_{V}(g)\right]=X_{V}(g) \sum X_{U}\left(g_{i}^{-1} g g_{i}\right)=X_{V}(g) X_{I n d_{H}^{G} u}(g) \square
\end{aligned}
$$

Remark 1: The conclusion holds who restriction on \mathbb{F} but the argument needs a few things from category theory. It's based on the following natural isomorphisms:
$\operatorname{Hom}_{G}\left(V_{1}^{\prime} \operatorname{Ind}_{H}^{G}(V \otimes U)\right) \xrightarrow{\sim}[$ Frobenius reciprocity $] \operatorname{Hom}_{H}\left(V^{\prime} V \otimes U\right)$ $\xrightarrow{\sim}$ [tensor-Hom adjunction] Home $\left(V^{\prime} \otimes V, U\right) \xrightarrow{\sim}$ [Frobenius reciprocity] $\mathrm{Hom}_{G}\left(V^{\otimes} \otimes V^{*}, \operatorname{In} \alpha_{H}^{G} U\right) \xrightarrow{\sim}$ [tensor-Hom adjunction] $\operatorname{Hom}_{G}\left(V^{\prime}, V \otimes \operatorname{In}_{H}^{G} U\right)$.

Remark 2: Theorem has a fun application to the structure theory of finite groups. Let G be a finite group. By a Frobenius complement we mean a subgroup $H \subset G$ which is "as

Consider the subset $K:=\left(G \mid \bigcup_{g \in G} g H g^{-1}\right) \cup\{e\}$. Then it is a subgroup (automatically normal) - this was proved by Frobenius.
2.3) Curious observations about Ind ${S_{\lambda}}_{s_{4}}$ triv, Ind ${s_{\lambda}}_{S_{4}}^{\text {sign. }}$

Here's a complete list of decompositions of $I_{n} \alpha_{S_{\lambda}}^{s_{4}}$ triv into ivreducibles. As before, \sqrt{F} is algebraically closed \& char $\mathbb{F}=0$.

- $\lambda=$ (4): Ind $S_{4}^{s_{4}}$ trio $=$ trio
- $\lambda=(3,1): \operatorname{Ind} \alpha_{S_{3}}^{S_{4}} \operatorname{triv}=\operatorname{Fun}\left(S_{4} / S_{3}, \mathbb{F}\right)=\left[S_{4} / S_{3} \xrightarrow{\sim}\{1,2,3,4\}\right.$, exercise $]=\mathbb{F}^{4}=$ Lemma in Sec 1.2 of Lee 5] $\operatorname{Lriv} \oplus \mathbb{F}_{0}^{4}$. permutation rep
- $\lambda=(2,2): \operatorname{In} \alpha_{S_{\lambda}}^{S_{4}}$ tiv $=\operatorname{triv} \oplus \mathbb{F}_{0}^{4} \oplus V_{2}, \operatorname{Sec} 2.1$ of Lect 14 .
- $\lambda=(2,1,1): \operatorname{Ind}{s_{\lambda}}_{s_{4}} \operatorname{triv}=\operatorname{triv} \oplus\left(\mathbb{F}_{0}^{4}\right)^{\oplus 2} \oplus V_{2} \oplus \operatorname{sgn} \otimes \mathbb{F}_{0}^{4}$, Example 1.
- $\lambda=(1,1,1,1): \operatorname{In} \alpha_{\{e\}}^{S_{4}}=F u n(C, F)=[$ regular representation, see Thu
in $\operatorname{Sec} 2.1$ of $\operatorname{Lec} 7]=\operatorname{triv} \oplus\left(\mathbb{F}_{0}^{4}\right)^{\oplus 3} \oplus V_{2}^{\oplus i} \oplus\left(\operatorname{sgn} \otimes \mathbb{F}_{0}^{4}\right)^{\oplus 3} \oplus \operatorname{sgn}$.

We record this as a table, where rows correspond to In $\alpha_{S_{\lambda}}^{S_{4}}$ trio, columns to the irreducibles \& the entries ave the multiplicities (we skip Os)

Table 1: Decompositions of $\operatorname{In} \alpha_{s_{\lambda}}^{s_{1}}$ triv:

λ	trio	\mathbb{F}_{0}^{4}	V_{2}	$\operatorname{sgn} \otimes \mathbb{F}_{0}^{4}$	sgn
4	1				
$(3,1)$	1	1			
$(2,2)$	1	1	1		
$(2,1,1)$	1	2	1	1	
$(1,1,1,1)$	1	3	2	3	1

Now we proceed to $I_{n d}{S_{\lambda}}_{S_{4}}$ sign, where by the sign representtion of S_{λ} we mean the restriction of sign from S_{4}. By Lemma in $\operatorname{Sec} 2.2$ (tensor identity), we have $I_{n d} \alpha_{S_{\lambda}}^{S_{4}} \operatorname{sgn} \simeq \operatorname{sgn} \otimes I_{n} \alpha_{S_{\lambda}}^{S_{4}}$ triv. So we get the following table

Table 2: Decompositions of $\operatorname{Tn}_{s_{\lambda}}^{s_{4}}$ sgn.

λ	trio	\mathbb{F}_{0}^{4}	V_{2}	$\operatorname{sgn} \otimes \mathbb{F}_{0}^{4}$	sgn
$(1,1,1,1)$	1	3	2	3	1
$(2,1,1)$		1	1	2	1
$(2,2)$			1	1	1
$(3,1)$				1	1
(4)					1

