Lecture 17: Representations of symmetric groups, II

1) Completing the classification of irreducibles.

2) Character formula.

Ref: [E], Sec. 5.12, 5.13, 5.15.

1) Completing the classification of irreducibles.

1.0) Reminder

We consider representations of S_n over an algebraically closed field F of char 0. We want to prove that the irreducibles are labelled by the partitions of n (a.k.a. Young diagrams w. n boxes), $\lambda \leftrightarrow V_\lambda$. Here V_λ is the unique irreducible occurring in both $I_\lambda^+ = \text{Ind}_{S_\lambda}^{S_n} \text{triv}$ & $I_\lambda^- = \text{Ind}_{S_\lambda^{op}}^{S_n} \text{sgn}$.

Example: $I_{(n)}^+ = \text{Ind}_{S_n}^{S_n} \text{triv} = \text{triv} \Rightarrow V_{(n)} = \text{triv}$. Further, $I_{(n-1,1)}^+ = \text{Ind}_{S_{n-1}}^{S_n} \text{triv} = \text{Fun}(S_n/S_{n-1}(\sim \{1,2,\ldots,n\}), F) = F^n$, permutation representation. We know, Lec 5, that $F^n = \text{triv} \oplus F^n$, the decomposition into irreducibles. Since $\lambda \mapsto V_\lambda$ is a bijection & $V_{(n)} = \text{triv}$, we see that $V_{(n-1,1)} = F^n$.

In Lec 16 we reduced the proof of the bijection to

Main Claim: For partitions \(\lambda, \mu \) of \(n \), we have:

1) \(\text{Hom}_{S_n}(I^\lambda_\lambda, I^-_\mu) \neq 0 \Rightarrow \mu^t \leq \lambda^t \)

2) \(\dim \text{Hom}_{S_n}(I^+_\lambda, I^-_\lambda) = 1 \)

We have proved a lemma that we'll use for Main Claim:

Lemma: \(\dim \text{Hom}_{S_n}(I^+_\lambda, I^-_\mu) \) coincides with
\[
\dim \{ f : S_n \rightarrow \mathbb{F} | f(\tau g \delta) = \text{sgn}(\tau) f(g) \neq g \in S_n, \tau \in S_{\mu^t}, g \in S_{\lambda^t} \} \tag{1}
\]

1.1) **Combinatorial preparation**

We start with a combinatorial formula for (1). We need some notation. Let \(k \) be the number of parts in \(\lambda \) and consider the subsets \(X_i, i = 1, \ldots, k \), of \(\{1, \ldots, n\} \) given by
\[
X_i = \{ \lambda_{i+1} + \ldots + \lambda_{i+m} | m = 1, \ldots, \lambda_i, \lambda_i \} \quad \text{so that} \quad S_\lambda = \{ \delta \in S_n | \delta(X_i) = X_i \cup \{ \lambda_i \} \}
\]
Similarly, let \(l \) be the number of parts in \(\mu^t \) and consider the subsets \(Y_j, j = 1, \ldots, l \),\n\[
Y_j = \{ \mu_{j+1}^t + \ldots + \mu_{j+m}^t | m = 1, \ldots, \mu_j^t, \mu_j^t \} \quad \text{so that} \quad S_{\mu^t}
\]
\[S_{\mu^t} = \{ \tau \in S_n \mid \tau(y_j) = y_j \ \forall j \} \]

Lemma: (1) coincides w the number of double cosets
\[S_{\mu^t} g S_\lambda \in S_{\mu^t} \backslash S_n / S_\lambda \text{ s.t.} \]
\[(\ast) \ |g^{-1} j^i X_i j| \leq 1 \ \forall i = 1, \ldots, k, j = 1, \ldots, l \]

Note that whether or not (*) holds for a given double coset is independent of the choice of \(g \) in that coset *(exercise).*

Proof of Lemma: Suppose (*) fails. We claim that:
\[f(\tau g g') = \text{sgn}(\tau) f(g) \ \forall \tau \in S_{\mu^t}, g' \in S_\lambda \Rightarrow f(g) = 0. \] Indeed, let \(a, b \in g^{-1} j^i X_i, a \neq b. \) Then \(g' = (a, b) \) preserves all \(X_i \), hence \(g' \in S_\lambda. \) Similarly \(g g' \in S_n \Rightarrow \tau = (g g') \in S_{\mu^t}. \) But
\[\tau = g' g^{-1} \Rightarrow \tau g = g' g^{-1} \Rightarrow \]
\[-f(g) = \text{sgn}(\tau) f(g) = f(\tau g) = f(g' g^{-1}) = f(g) \Rightarrow f(g) = 0. \]

Now let \(S_{\mu^t} g_1 S_\lambda, \ldots, S_{\mu^t} g_r S_\lambda \) be all double cosets s.t. (*) holds. It is an exercise to show that for \(s = 1, \ldots, r: \]
Define \(f_5 : S_n \to \mathbb{F} \), by requiring that \(f_5 \) is zero on all double cosets but \(S_{\mu} g S_{\chi} \) & \(f_5(\tau g_6') := \text{sgn}(\tau) \), which is well-defined by of the uniqueness condition above, so that \(f_5(\tau g_6') = \text{sgn}(\tau) f_5(g) \). The following finishes the proof.

Exercise: The functions \(f_5, ..., f_1 \) form a basis in the space in (1) (hint: \(f = \sum_{i=1}^{r} f(g_i) f_i \)) hence \((1) = r \). \(\square \)

1.2) Proof of Main Claim

Thanks to lemmas in Sections 1.0, 1.1, we need to show that the existence of a double coset satisfying (\(* \)) implies \(\mu^t \leq \lambda^t \) (which we'll prove) & for \(\lambda = \mu \), there's the unique such double coset (which we'll see in the course of the proof).

\(\lambda_q^t \) is the height of the \(q \)-th column in \(\lambda \) viewed as a diagram. So, \(\kappa \) (the number of \(X_i \)'s) = \(\lambda_q^t \) & more generally:
(2) \(\lambda_t^q = \{ i \mid |X_i| \geq q \} \neq \emptyset \), \(q = 1, \ldots, \lambda_t \) (exercise)

If \(\mu_t^q = |Y_q| > \lambda_t \), then (*) is violated. We only need to analyze the case \(\mu_t^q = \lambda_t \) (otherwise, \(\mu^t < \lambda^t \) indeed). In this case, (*) \(\Rightarrow |g^{-1}_i Y_q \cap X_i| = 1 \neq \lambda_t \). Let \(b_i \in S_{\lambda_i} \), \(b_i = b_{i_1} \ldots b_{i_k} \), where \(b_{i_k} \) is the transposition in \(S_{\lambda_i} = \text{Bij} (X_i) \) permuting the only element \(g_i^{-1} Y_q \cap X_i \) with the smallest element in \(X_i \), \(\lambda_i + \lambda_{i-1} + 1 \). Replacing \(g_i \) with \(b_i \), we get \(g_i^{-1} Y_q \cap X_i = \{ \lambda_i + \lambda_{i-1} + 1 \} \).

Set \(X_i' = X_i \setminus \{ \lambda_i + \lambda_{i-1} + 1 \} \)

- \(g_i^{-1} Y_q \cap X_i' = g_i^{-1} Y_q \cap X_i' \neq j \geq 2, \forall i \).
- \(\# \{ i \mid X_i' \neq \emptyset \} = \lambda_t^t, \) by (2).

So, if \(\mu_t^q = |Y_q| > \lambda_t \), then \(g_i^{-1} Y_q \cap X_i' \) contains 2 elements for some \(i \), violating (*). So we can assume \(\mu_t^q = \lambda_t \), modify \(g \) similarly to the above, form \(X_i'' = X_i' \setminus \{ \lambda_i + \lambda_{i-1} + 2 \} \) & continue in the same fashion proving: \(\exists \) coset satisfying (*) \(\Rightarrow \mu^t \leq \lambda^t \).

If \(\lambda = \mu \), then we have modified \(g \) by multiplying \(\lambda \) with an element of \(S_{\lambda} \) from the right so that

(3) \(g_i^{-1} Y_q \cap X_i = \{ \lambda_i + \lambda_{i-1} + j \} \) if \(j \leq \lambda_i \) (and \(\emptyset \) else).
An element \(g \in S_n \) satisfying (3) (and hence (\(\ast \)) exists: to see this: fill the diagram \(\lambda \) w. numbers 1, 2, ..., \(n \), left to right, then bottom to top. e.g. for \(\lambda = (3, 1) \) we get

\[
\begin{array}{c}
4 & 5 \\
2 & 3 \\
1 & \end{array}
\]

The \(i \)th row consists of the elements of \(X_i \).

Then fill the same diagram but now bottom to top & then left to right.

\[
\begin{array}{c}
2 & 4 \\
1 & 3 & 5 \\
\end{array}
\]

The \(j \)th column consists of the elements of \(Y_j \).

Take \(g \) that sends the number in the first diagram to the number in the same box in the 2nd diagram. In our example it is \(1 \mapsto 1, 2 \mapsto 3, 3 \mapsto 5, 4 \mapsto 2, 5 \mapsto 4 \). It satisfies (3).

We claim that (3) determines \(g \) uniquely in its left \(S_{\mu'} \)-coset finishing the proof. Indeed, let \(g_1 \) be another element satisfying (3). Let \(\tau \in S_{\mu'} \) be defined by sending

\[
\tau(\lambda_1 + \ldots + \lambda_i + j) \in Y_j \ to \ g_1(\lambda_1 + \ldots + \lambda_i + j) \in Y_j \ (i \leq \lambda_i). \]

This
uniquely determines the element \(\tau \) and it preserves each \(Y_j \), so \(\tau \) lies in \(S_n \). By construction, \(\tau g = g_1 \).

Rem: Note that the proof works as long as \(\text{char } F \neq 2 \).

2) Character formulas.

We proceed to computing characters of irreducible representations of symmetric groups. We assume that \(F \) is algebraically closed of characteristic 0 (the condition of being algebraically closed can be removed).

For \(m \in \mathbb{Z} \), define the power symmetric polynomial

\[
p_m = \sum_{i=1}^{N} x_i^m
\]

For \(\sigma \in S_n \), let \((m_1, \ldots, m_k)\) be its cycle type. We set

\[
p_{\sigma} = p_{m_1} p_{m_2} \cdots p_{m_k}
\]

For example, \(p_{\sigma} = p_{(1, \ldots, 1)} = (x_1 + \cdots + x_N)^n \).

Note that \(p_{\sigma} \) only depends on the conjugacy class of \(\sigma \).

Finally, we will need the Vandermonde determinant

\[
\Delta = \prod_{1 \leq i < j \leq N} (x_i - x_j) = \det (x_i^{N-j})_{i,j=1}^N
\]
Theorem (Frobenius) $X^\lambda(\nu)$ coincides with the coefficient of $\prod_{i=1}^N x_i^{\lambda_i + N - i}$ in Δp_ν (recall that we adjoin 0's to λ if needed).

We will prove the theorem next time.

Example: Suppose $\lambda = (n)$, so that $I^\lambda = \text{Ind}_{S_n}^{S_n} \text{triv} = \text{triv}$

$\Rightarrow V^\lambda = \text{triv} \Rightarrow X^\lambda(\nu) = 1 \neq \nu \in S_n$. The monomial we care about is $x_1^{N-1+n} x_2^{N-2} \cdots x_{N-1}$. On the other hand,

$\Delta p_\nu = \left[\text{use the determinant description of } \Delta \right]$

$= \left(\sum_{\tau \in S_n} \text{sgn}(\tau) x_1^{\tau(1)-1} \cdots x_N^{\tau(n)-1} \right) p_\nu$. Note that the largest monomial (w.r.t. lexicographic order) in the sum is $x_1^{N-1} x_2^{N-2} \cdots x_{N-1}$, w. coefficient 1

while in p_ν, it's x_n^n w. coefficient 1. So $x_1^{N-1+n} x_2^{N-2} \cdots x_{N-1}$ is the largest monomial in Δp_ν, & the coefficient is indeed 1.

Remarks: 1) The theorem is not easy to use to compute the characters (try to derive the formula for the character of $V^{(n+1, n)}$). It does, however, lead to fairly explicit combinatorial
torial results of which I would like to mention two:

- the formula for decomposition of $\text{Res}_{S_n,1} V_\lambda$ into the direct sum of irreducibles, Homework 4.

- the hook-length formula for $\dim V_\lambda = \text{coefficient of } \prod_{i=1}^N x_i^{\lambda_i + N - i}$ in $\Delta(x_1^{\lambda_1}, \ldots, x_N^{\lambda_N})$, see Sec 5.17 in [E].

We'll have a further discussion of how to think about the Frobenius character formula in a bonus lecture.

2) As was discussed in the bonus section of Lec 16, the results of this section carry over to the case of nonclosed char 0 fields. They also carry over to the case when $n \nmid p$.

But, in general, the characters (and even dimensions) of irreducible representations of $\text{Res}_{S_n} (w. \text{char } \mathbb{F} = p)$ are not known, and this is an area of active current research.