Lecture 18: Representations of symmetric groups, III.

1) Proof of character formula.

Ref: [E], Secs 5.14\& 5.15.

1) Proof of character formula.

Recall the notation. IF is an algebraically closed field of char $=0$. To a partition λ, we assign the irreducible rep. resentation V_{λ} of S_{n}. Let $N \geqslant n$. Consider symmetric polynomiats $p_{m}=\sum_{i=1}^{N} x_{i}^{m}(m>0)$ and, for $\sigma \in S_{n}, p_{\sigma}=p_{m_{1}} \ldots p_{m_{q}}$, where $\left(m_{1}, \ldots m_{q}\right)$ is the cycle type of 6 . Finally, consider the Vandermonde determinant $\Delta=\operatorname{det}\left(x_{i}^{N-j}\right)_{i, j=1}^{N}=\prod_{i<j}\left(x_{i}-x_{j}\right)$

Theorem (Frobenius) $X_{V_{\lambda}}\left(\sigma^{\prime}\right)$ coincides w. the coefficient of $\prod_{i=1}^{N} x_{i}^{\lambda_{i}+N-i}$ in Δp_{6}.
1.1) Formula for $X_{I_{\lambda}^{+}}$

The first step for proving the theorem is to get a similar in spirit formula for $X_{I_{\lambda}^{+}}$, where, recall, $I_{\lambda}^{+}=\operatorname{In} \alpha_{S_{\lambda}}^{s_{n}}$ triv. 1

Proposition: $X_{I_{\lambda}^{+}}(\sigma)$ is the coefficient of $\prod_{i=1}^{N} x_{i}{ }^{\lambda_{i}}$ in $\rho_{\sigma}\left(\sigma \in S_{n}\right)$.
Proof:
Weill give a combinatorial interpretation of $X_{I_{\lambda}}+(\sigma)$. Recall that $I_{\lambda}^{+}=\operatorname{Fun}\left(S_{n} / S_{\lambda}, \mathbb{F}\right)$, so, by $\operatorname{Sec} 2.1$ of $\operatorname{Lec} 8$, $X_{I_{\lambda}^{+}}(\sigma)=\left|\left(S_{n} / S_{\lambda}\right)^{\sigma}\right|$, the \# of σ-fixed points in S_{n} / S_{λ}. A point of S_{n} / S_{λ} can be thought of an ordered collection of subsets $X_{i} \subset\{1,2, \ldots n\}, i=1, \ldots, k:=\lambda_{1}^{t}, w .\left|X_{i}\right|=\lambda_{i} \&\{1,2, \ldots n\}=\bigcup_{i} X_{i}:$ the group S_{n} acts by permuting the elements of $\{1,2, . n\}$ (the action is transitive \& S_{λ} is the stabilizer of the collection $X_{i}=\left\{\lambda_{1}+\ldots+\lambda_{i-1}+m / m=1,2, \ldots \lambda_{i}\right\}$ that appeared in Sec 1.1 of the previous lecture, the proof is left as an exercise)
$\left(X_{1}, \ldots X_{k}\right)$ is fixed by $\sigma^{\sigma} \Leftrightarrow \sigma\left(X_{i}\right)=X_{i}$ Hi. Let $\langle\sigma\rangle \subset S_{n} \sigma_{e}$ the subgroup generated by $\sigma \& Z_{1} \ldots Z_{q}$ be the $\langle\sigma\rangle$-orbits in $\left\{1,2, \ldots n, Z_{l}:=\{\right.$ numbers in the l th cycle of $\sigma\}$, so $\left|Z_{l}\right|=m$. If course, $\sigma\left(X_{i}\right)=X_{i} \Leftrightarrow X_{i}$ is the union of orbits. Therefore, the \# of fixed points $=$ \# of splittings of $\left(m_{1} \ldots m_{q}\right)$ into N groups w. sums $\lambda_{1}, \ldots \lambda_{N}$. This coincides w. the coefficient of $x_{1} \ldots x_{N}^{\lambda_{N}}$ $\frac{\text { in }}{2} \prod_{l=1}^{q} \sum_{i=1}^{N} x_{i}^{m_{l}}$, finishing the proof.
1.2) Reduction to combinatorial statement.

We now proceed to proving the theorem. In this section we reduce the proof to "Main Claim", which will be proved in the next section, entirely based on arguments that do not involve representations (manipulations w. formal power series, mostly). First, some notation. For $\alpha=\left(a, \ldots, a_{N}\right) \in \mathbb{Z}^{N}$, set $x^{\alpha}=\prod_{j=1}^{N} x_{i}^{a_{i}}$. Set $\rho:=(N-1, N-2, \ldots, 0)$ so that

$$
\Delta=\sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) x^{\tau \rho} \text { permutation }
$$

For a partition λ of $n \& \sigma \in S_{n}$, we write $\theta_{\lambda}(\sigma)$ for the coefficient of $x^{\lambda+p}$ in Δp_{σ}. We need to show that
(1)

$$
\theta_{\lambda}\left(\sigma^{\prime}\right)=X_{V}\left(\sigma^{\prime}\right)
$$

Note that by the very definition, $p_{\sigma}=p_{\sigma^{\prime}}$, if $\sigma, \sigma^{\prime \prime}$ have the same cycle type \Leftrightarrow conjugate. So $\theta_{\lambda}: S_{n} \rightarrow \mathbb{Z}$ is a class function.

Recall that on $C\left(S_{n}\right)$ we have the symmetric bilinear form

$$
\left(f_{1}, f_{2}\right)=\frac{1}{\left|S_{n}\right|} \sum_{\sigma \in S_{n}} f_{1}\left(\sigma^{\prime}\right) f_{2}\left(\sigma^{-1}\right)=\left[\sigma \& \sigma^{-1}\right. \text { have the }
$$

same cycle type, hence conjugate $]=\frac{1}{\left|S_{n}\right|} \sum_{\sigma^{\prime} \in S_{n}} f_{1}(\sigma) f_{2}\left(\sigma^{\prime}\right)$.

The orthogonality of characters (Lec 9) tells us that

$$
\left(x_{V_{\lambda}}, x_{V_{\lambda}}\right)=1
$$

Main Claim: For all partitions λ of n, we have $\left(\theta_{\lambda}, \theta_{\lambda}\right)=1$.

Well prove Main Claim in the next section (who any representation theory).

Proof of Theorem modulo Main Claim:
The proof goes as follows:

Step 1: Check $\theta_{\lambda}=X_{I_{\lambda}^{+}}+\sum_{\mu^{t}<\lambda^{t}} a_{\mu \lambda} X_{I_{\mu}^{+}} w . \quad a_{\mu \lambda} \in \mathbb{Z}$.
Step 2: Check $X_{I_{\lambda}^{+}}=X_{V_{\lambda}}+\sum_{\mu^{t}=\lambda^{t}} K_{\mu \lambda} X_{V_{\mu}}$ w. $K_{\mu \lambda} \in \mathbb{Z}_{\lambda_{0}}$, these are called "Kostika numbers."

Step 3: Combine Steps 1,2 w. Main Claim \& orthonormality of characters of inreducibles to finish the proof.

Now the details:

Step 1: For $\alpha=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{Z}^{N}$, let $L_{\alpha}(\sigma)$ be the coefficient of x^{α} in $p_{\sigma}: p_{\sigma}=\sum_{\alpha} c_{\alpha}(\sigma) x^{\alpha}$. Note that:

- $C_{\alpha}\left(\sigma^{N}\right)=0$ unless $\alpha \in \mathbb{Z}_{\pi_{0}}^{N} \& \sum_{a_{j}}=n$
- Since ρ_{σ} is symmetric, $c_{\alpha}(\sigma)=c_{\tau \alpha}\left(\sigma^{\prime}\right) \forall \tau \in S_{N}$.
- if $a_{1} \geqslant a_{2} \geqslant \ldots \geqslant Q_{N}$ (so that α is a partition of n), we have $C_{\alpha}(\sigma)=X_{I_{\lambda}^{+}}(\sigma)$, this is Proposition in Sec 1.1

Then $\Delta p_{\sigma}=\left(\sum_{\tau \in S_{N}} \operatorname{sgn}(\tau) x^{\tau \beta}\right)\left(\sum_{\alpha \in \mathbb{R}^{N}} C_{\alpha}\left(\sigma^{\alpha}\right) x^{\alpha}\right)=$
$=\sum_{\tau, \alpha} \operatorname{sgn}(\tau) c_{\alpha}(\sigma) x^{\alpha+\tau \rho}$. The coefficient of $x^{\lambda+\rho}$ is
(2)

$$
\theta_{\lambda}=\sum_{\tau \in S_{N}} \operatorname{sgn}(\tau) L_{\lambda+\rho-\tau \rho}(\sigma) .
$$

Now we need to deduce
(3)

$$
\theta_{\lambda}=C_{\lambda}+\sum_{\mu^{t} \leqslant \lambda^{+}} \theta_{\mu \lambda} C_{\mu}
$$

Note that here μ_{μ} is a partition: $\mu_{1} \geqslant \mu_{2} \geqslant \cdots \mu_{N}$. For $\alpha \in \mathbb{Z}^{N}$, we write α_{+}for the unique decreasing permutation of α. We need to show that for $\mu=(\lambda+\rho-\tau \rho)_{+} w . \tau \neq e$ we have $\mu^{t}<\lambda^{t}$ (assuming $\mu \in \mathbb{Z}_{\geqslant_{0}}^{N}$).

For this, it's convenient to introduce a partial order on the set of partitions of n, often called the dominance order. For partitions λ, μ of n, we set $\lambda \leq \mu$ if

$$
\sum_{i=1}^{k} \lambda_{i} \leqslant \sum_{i=1}^{k} \mu_{i} \forall k=1, \ldots N .
$$

Two remarks ave in order:

- $\lambda \prec \mu \Rightarrow \lambda<\mu$.
- $\lambda \prec \mu \Leftrightarrow$ as a diagram μ is obtained from λ by moving some boxes down (and to the right) $\Leftrightarrow \mu^{t}<\lambda^{t}$

Return to $\mu=(\lambda+\rho-\tau \rho)_{+}$. Note that $\mu \geq \lambda$:

$$
\sum_{i=1}^{k} \mu_{i} \geqslant \sum_{i=1}^{k}\left(\lambda_{i}+N-i-N+\tau^{-1}(i)\right) \geqslant \sum_{i=1}^{k} \lambda_{i}
$$

w In $\alpha \geqslant$ being $>$ for $\tau \neq e 6 / c \sum_{i=1}^{k} \tau^{-1}(i) \geqslant \sum_{i=1}^{k} i \quad \forall k w .=\Leftrightarrow \tau=e$.
So $\mu^{t} \alpha \lambda^{t}$ if $\tau \neq e \Rightarrow \mu^{t}<\lambda^{t}$. This finishes Step 1.

Step 2: We have $I_{\lambda}^{+}=\bigoplus_{\mu} V_{\mu}^{\oplus K_{\mu \lambda}}$ for some $K_{\mu \lambda} \in \mathbb{Z}_{\geqslant 0}$. Recall that V_{μ} occurs in $I_{\mu}^{-} \forall \mu \&$
(4)
(4) implies $K_{\mu \lambda} \neq 0 \Rightarrow \mu^{t} \leqslant \lambda^{t}$. Moreover, $K_{\lambda \lambda}>0$ by the canstruction of $V_{\lambda} \& \leq 1$ by (4). So $I_{\lambda}^{+}=V_{\lambda} \oplus \bigoplus_{\mu^{t<\lambda^{t}}} V_{\mu}^{\oplus K_{\mu \lambda}} \Rightarrow$
(5) $L_{\lambda}=X_{V_{\lambda}}+\sum_{\mu^{+}<\lambda^{+}} K_{\mu \lambda} X_{V_{\mu}}$

Step 3: From (3) \& (5) we deduce
(6) $\theta_{\lambda}=X_{V_{\lambda}}+\sum_{\mu^{t}<\lambda^{t}} 6_{\mu \lambda} X_{V_{\mu}} \quad\left(6_{\lambda_{\mu}} \in \mathbb{Z}\right)$

According to Main Claim, $\left(\theta_{\lambda}, \theta_{\lambda}\right)=1 \Rightarrow\left[(6)+\left(X_{V_{\lambda^{\prime}}}, X_{V_{\lambda^{\prime \prime}}}\right)\right.$

$$
\left.=\delta_{\lambda_{,}^{\prime} \lambda^{\prime \prime}}\right]=1+\sum_{\mu^{t}<\lambda^{t}} 6_{\mu \lambda}^{2} \Rightarrow \theta_{\lambda}=X_{V_{\lambda}}
$$

Remark: Here is a combinatorial interpretation of $K_{\mu \lambda}$ By a (semistandard) Young tableau of shape μ and weight λ we mean a filling of the Young diagram $\mu \mathrm{w}$. $\lambda_{1} 1 \cdot 5, \lambda_{2} 2 \cdot 5, \ldots$ so that the numbers weakly increase left to right and strictly increase bottom to top. E.g. for $\mu=(3,1) \& \lambda=(2,1,1)$, have $K_{\mu \lambda}=2$:
1.3) Proof of Main Claim.
$\theta_{\lambda}(\sigma)$ is defined as the coefficient of a monomial in some polynomial. We want to give a similar interpretation of $\left(\theta_{\lambda}, \theta_{\lambda}\right)$. For this we need two collections of variables:

$$
7_{7}^{x_{1} \ldots x_{N} \& y_{1} \ldots y_{N} .}
$$

Lemme 1: $\left(\theta_{\lambda}, \theta_{\lambda}\right)$ coincides w. the coefficient of $x^{\lambda+\rho} y^{\lambda+\rho}$ in the formal power series expansion of

$$
\Delta(x) \Delta(y) \prod_{i, j=1}^{N}\left(1-x_{i} y_{j}\right)^{-1}
$$

where $\Delta(x), \Delta(y)$ are the Vandermondes in $x_{1}, \ldots x_{N} \& y_{1}, \ldots y_{N}$. Proof:

Since $\theta_{\lambda}(\sigma)$ is the coefficient of $x^{\lambda+\rho}$ in $\Delta(x) p_{\sigma}(x)$, then $\theta_{\lambda}(\sigma)^{2}$ is the coefficient of $x^{\lambda+\rho} y^{\lambda+\rho}$ in $\Delta(x) \Delta(y) \rho_{\sigma}(x) \rho_{\sigma}(y)$. To get to $\left(\theta_{\lambda}, \theta_{\lambda}\right)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \theta_{\lambda}\left(\sigma^{2}\right)^{2}$ we ned to rewrite the r.h.s. appropriately. We encode a conjugacy class in S_{n} as a sequence $\underline{i}=\left(i_{m}\right)_{m \geqslant 1} w . \sum_{m=1}^{\infty} m i_{m}=n$ (this equality means, in particular, that only finitely many of i_{m} 's are nonzero): to this collection we assign the class w. cycle type consisting of i_{m} cycles of length $m, \forall m$. We write $\theta_{\lambda}(\underline{i})$ for $\theta_{\lambda}(\sigma) w \cdot \sigma$ in the corresponding conjugacy class and $z(\underline{i})$ for the order of $Z_{S_{n}}(\sigma)$ so that the number of elements in the conjugacy class is $\frac{n!}{z(\underline{i})}$. So

$$
\left(\theta_{\lambda}, \theta_{\lambda}\right)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \theta_{\lambda}(\sigma)^{2}=\sum_{\underline{i} / \sum m_{m}=n} \frac{\theta_{\lambda}(\underline{i})^{2}}{z(\underline{i})}
$$

Exerase: $Z(\underline{i})=\prod_{m \geqslant 1} i_{m}$! $m^{i_{m}}$ (all factors but finitely many are 1).

What we've got so far is that $\left(\theta_{\lambda}, \theta_{\lambda}\right)$ is the coefficient of $x^{\lambda+\rho} y^{\lambda+\rho}$ in $\Delta(x) \Delta(y) \sum_{\underline{i}} \frac{p_{\underline{i}}(x) p_{\underline{i}}(y)}{\prod_{m \geq 1} i_{m}!m^{i_{m}}}$. Here the sum is
taken over all \underline{i} s.t. $\sum m i_{m}=n$ (and $p_{i}(x)=\prod_{l=0}^{\infty}\left(\sum x_{j}^{l}\right)^{i}$, it's equal to $p_{\sigma}(x)$ for σ in the conjugacy class corresponding to i). The key observation is that $x^{\lambda+p} y^{\lambda+p}$ can only appear in $p_{\underline{i}}(x) p_{\underline{i}}(y)$ if $\sum m i_{m}=n$ - for degree reasons. So we can sum over all i.

So $\left(\theta_{\lambda}, \theta_{\lambda}\right)$ is the coefficient of $x^{\lambda+p} y^{\lambda+p}$ in $\Delta(x) \Delta(y) \cdot(*)$, where

$$
\begin{aligned}
& \quad(*)=\sum_{\underline{i}} \prod_{l=0}^{\infty} \frac{\left(\sum x_{j}^{l}\right)^{i_{l}}\left(\sum y_{j}^{l}\right)^{i_{l}}}{l^{i} i_{l}!}=\sum_{\underline{i}} \prod_{l=0}^{\infty}\left(\sum_{j, k=1}^{N} x_{j}^{l} y_{k}^{l} / l\right)^{i_{l}} / i_{l}!= \\
& =\prod_{l=0}^{\infty} \sum_{i_{l}=0}^{\infty}\left(\sum_{j, k=1}^{N} x_{j}^{l} y_{k}^{l} / l\right)^{i_{l}} / i_{l}!=\prod_{l=0}^{\infty} \exp \left(\sum_{j, k=1}^{N}\left(x_{j} y_{k}\right)^{l} / l\right)= \\
& =\exp \left(\sum_{j, k=1}^{N} \sum_{l=0}^{\infty}\left(x_{j} y_{k}\right)^{l} / l\right)=\prod_{j, k=1}^{N} \exp \left(-\log \left(1-x_{j} y_{k}\right)\right)=\prod_{j, k=1}^{N}\left(1-x_{j} y_{k}\right)^{-1}
\end{aligned}
$$

This finishes the proof.

Lemme 2 (Cauchy's determinantal identity)
(7) $\quad \Delta(x) \Delta(y) \prod_{j, k=1}^{N}\left(1-x_{j} y_{k}\right)^{-1}=\operatorname{det}\left(\frac{1}{1-x_{j} y_{k}}\right)_{j, k=1}^{N}$

Proof: Set $z_{j}=x_{j}^{-1}, \varepsilon=(-1)^{N(N-1) / 2}(7)$ is equivalent to

$$
\frac{\varepsilon \Delta(z) \Delta(y)}{\prod_{j, k=1}^{N}\left(z_{j}-y_{k}\right)}=\operatorname{det}\left(\frac{1}{z_{j}-y_{k}}\right) \Leftrightarrow \varepsilon \Delta(z) \Delta(y)=\operatorname{det}\left(\frac{1}{z_{j}-y_{k}}\right) \prod_{j, k=1}^{N}\left(z_{j}-y_{k}\right)
$$

Both sides are polynomials in z_{j}, y_{k} of deg $N^{2}-N$. Both vanish when $z_{j}=z_{j}$, for $j \neq j$ ' or when $y_{k}=y_{k^{\prime}}$ for $k \neq k^{\prime}$. So, the polynomials ave proportional.

We need to show the coefficient of proportionality is 1. In order to do this, set $y_{k}=z_{k} \forall k=1 . ., N$. In the l.h.s. we get $\varepsilon \Delta(y)^{2}$ In the k.h.s. we get $\prod_{j \neq k}\left(y_{j}-y_{k}\right)$. The two are equal.

Proof of Main Claim:
Combining Lemmas $1 \$ 2$ we see that $\left(\theta_{\lambda}, \theta_{\lambda}\right)$ is the coef. 10
ficient of $x^{\lambda+\rho} y^{\lambda+p}$ in the power series expansion of

$$
\operatorname{det}\left(\frac{1}{1-x_{j} y_{k}}\right)_{j, k=1}^{N}=\sum_{\tau \in S_{N}} \frac{\operatorname{sgn}(\tau)}{\prod_{j}\left(1-x_{j} y_{\tau(j)}\right)}=\sum_{\tau \in S_{N}} \operatorname{sgn}(\tau) \prod_{j=1}^{N} \sum_{\ell=0}^{\infty} x_{j}^{\ell} y_{\tau(j)}^{\ell}
$$

For $\tau \neq e$, the coefficient of $x^{\lambda+\rho} y^{\lambda+\rho}$ in $\prod_{j=1}^{N} \sum_{\ell=0}^{\infty} x_{j}^{\ell} y_{\tau}^{\ell}(j)$ is zero $b / c \lambda+p$ is strictly decreasing \& the monomials in this formal power series ave of the form $x^{\alpha} y^{\tau \alpha}$ for some α. An α the coefficient of $x^{\lambda+\rho} y^{\lambda+\rho}$ in $\prod_{j=1}^{N} \sum_{e=0}^{\infty}\left(x_{j} y_{j}\right)^{l}$ is 1 .

Remark: This finishes our study of group representations - with exception of bonus lectures, where will discuss more things around representations of symmetric groups. One remanence is in order. We've seen that in the study of representations of S_{n} induction plays an important vole. Overall, induction is a quite powerful tool. It can be used to understand representations of semi-direct products of the form $K \propto A$, where $K \& A$ ave finite groups \& A is abelian. See Sec 5.27 in [E]. Induction can also be used to classify the irreducible vepresen11
tations of groups like $C_{n}\left(\mathbb{F}_{q}\right)$. See Sec 5.25 in [E] for the $n=2$ case.
\qquad

