Lecture 2: Basics, I.
a) Recap.

1) Example: from actions to representations, cont id.
2) Constructions w. representations.

Bonus: More on "from actions to representations"
a) Recap.

In the first lecture we have defined a representation of a group, C, in a vector space, V, as a group homomorphism $\rho: G \rightarrow G L(V)$, where the target is the group of all invertible linear operators $V \rightarrow V$. Often, we abuse/ abbreviate the terminology and say that V itself is a representation of G (who mentioning ρ explicitly). Below we often write g_{v} for $p(g)$. And as was mentioned in Sec. 1 of Lee, to give a representation of $G \operatorname{in} V$ is the same thing as to ${ }_{11}$ equip V with a G-action by linear operators.

Let X be a set equipped w. a G-action. From here we constructed a representation of G in the vector space Fun (X, F) of functions $X \rightarrow \mathbb{F}$ (w. pointwise operations) by

$$
[g \cdot f](x)=f\left(g^{-1} x\right) \quad(f \in \operatorname{Fun}(x, \mathbb{F}), g \in G, x \in X) .
$$

Below we always consider Fun (X, \mathbb{F}) w. this structure of a representation.

Our next task is to discuss this example in more detail.

1) Example: from actions to representations, contra. First we want to understand how G acts on certain vectors in Fun (X, \mathbb{F}).

For $x \in X$, we can consider its "S-function" δ_{x} defined by

$$
\delta_{x}(y)= \begin{cases}1, & x=y \\ 0, & e l s e\end{cases}
$$

Exercise: We have $g \cdot \delta_{x}=\delta_{g x}$.

Rem: If X is finite, then the functions $\delta_{x}, x \in X$, form a basis in Fun $(X, \sqrt[F]{ })$-this is one reason why we cave.

Now we consider some special cases.

Example 1: Let $S=S_{n}$, the symmetric group on $\{1,2, \ldots, n\}$ \& $X=\{1,2, \ldots, n\} w . G$ acting by permutations. The basis $\delta_{1}, \ldots \delta_{n}$ identifies $F u n(X, \mathbb{F}) \leadsto \mathbb{F}^{n}$ and we get the representation of S_{n} in \mathbb{F}^{n} given by

$$
g \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(a_{g^{-1}(1)}, \ldots, a_{g^{-1}(n)}\right), g \in S_{n}, a_{i} \in \mathbb{F}
$$

It is called the permutation representation.

Example 2 Now let C be a finite group, and $X=S w$. action by left multiplications: $g . h=g h$, so that, on the basis $\delta_{h} \in \operatorname{Fun}(G, \mathbb{F})(h \in G), G$ acts as $g \cdot \delta_{h}=\delta_{g h}$. The resulting representation is called regular, it plays an important vole in the theory.

Side remarks:

1) Students who took MATH 380 could observe that Fun $(; \mathbb{F})$ is a contravaviant functor from the category of 3
sets to the category of IF-vector spaces (and, even stronger to the category of commutative algebras). The construction of the G-representation in $\operatorname{Fun}(X, \mathbb{F})$ is a formal consequence of the functor claim.
2) Our usual setting in this course is that G\&X are finite. A more interesting (and important) setting is when both $S \& X$ are infinite and come w. additional structure - and we can restrict the class of functions on X we consider. Weill discuss this in the bonus section 3.
3) Constructions w. representations.
2.1) Direct sums. This has been mentioned in $\operatorname{Sec} 2$ of Lee 1: if $V_{1} \ldots V_{k}$ are representations of G, then $V_{1} \oplus \ldots, \oplus V_{k}=\left\{\left(v_{1}, \ldots, v_{k}\right) \mid v_{i} \in V_{i}\right\}$ is a representation of G with $g \cdot\left(v_{1} \ldots, v_{k}\right):=\left(\lg v_{1} \ldots, \underline{g} v_{k}\right)$. To check this is indeed a representation is left as an exercise.
2.2) Subrepresentations.

Definition: Let V be a representation of G. A subspace $U \subset V$ is called a subrepresentation if it is G-stable: $g_{v}(u) \subset U \quad \forall g \in G$.

Note that the map $g \mapsto g_{u}:=\left.g_{v}\right|_{u}: G \rightarrow C L(u)$ is also a representation of G (exercise). We always consider U w. this structure of a representation.

Examples: 1) Let V_{1}, V_{2} be representations of G. Then $\left\{\left(v_{1}, 0\right) \mid v_{1} \in V_{1}\right\},\left\{\left(0, v_{2}\right) \mid v_{2} \in V_{2}\right\}$ are subrepresentations of $V_{1} \oplus V_{2}$. Note that they are naturally identified w. V_{1}, V_{2} and this is how we view V_{1}, V_{2} as subrepresentations of $V_{1} \oplus V_{2}$.
2) Let X be a set acted on by G. The subspace of constant functions, $\operatorname{Fun}_{\text {cons }}(X, \mathbb{F}) \subset \operatorname{Fun}(X, \mathbb{F})$ is a subresentation of $\operatorname{Fun}(X, \mathbb{F})$.

Now assume X is finite. Consider

$$
\operatorname{Fun}_{0}(X, \mathbb{F})=\left\{f: X \rightarrow \mathbb{F} \mid \sum_{x \in X} f(x)=0\right\} \subset \operatorname{Fun}(X, \mathbb{F}) .
$$

It's a subrepresentation: G just permutes summands in $\sum_{x \in X} f(x)$.
3) Let V be an arbitrary representation of G. An element $v \in V$ is called G-invariant if $g . v=v \quad \forall g \in C$. The subset of all C-invariants is a subspace - e.g. $g \cdot v_{i}=v_{i}, i=1,2 \Rightarrow$ $g \cdot\left(v_{1}+v_{2}\right)=[g$ acts by a linear operator $]=g \cdot v,+g \cdot v_{2}=v_{1}+v_{2}$. This subspace is denoted by V^{G}. It is a subrepresentation. Note that $\operatorname{Fun}_{\text {cons }}(X, \mathbb{F}) \subset \operatorname{Fun}(X, \mathbb{F})^{G}$ w. equality $\Leftrightarrow X$ is an orbit.

Exercise: If $U_{,} U^{\prime} \subset V$ are subvesentations, then so are $U \cap U^{\prime}$, $U+U^{\prime}$

Remark: Suppose $\operatorname{dim} V=n$ and choose a basis $v_{1, \ldots} v_{n}$ of V s.t. $v_{1}, \ldots v_{k}$ is a basis of U. The condition that $g_{v}(u) c u$ means that the matrix of g_{v} in this basis is of black. triangular form: $k \begin{cases}\left(\begin{array}{ll}A_{g} & B_{g} \\ 0 & D_{g}\end{array}\right)\end{cases}$

Then in the basis $v_{1} \ldots v_{k}$ of U, the operator g_{u} is given by the matrix Ag.
2.3) Quotient representations.

We are not going to see them often, but let's cover them for the sake of completeness.

Let V be a vector space over \mathbb{F}, and $U \subset V$ be a subspace. We can form the quotient vector space, V/U, whose elements are the subsets of the form $v+U=\{v+u \mid u \in U\}$ for $v \in V$ and the operations are as follows:

$$
\left(v_{1}+U\right)+\left(v_{2}+U\right)=\left(v_{1}+v_{2}\right)+U, a\left(v_{1}+U\right)=a v_{1}+U, v_{1}, v_{2} \in V, a \in \mathbb{F} .
$$

Exercise: Suppose now V is a representation of $G \&$ U is a subrepresentation. Show that there is the unique G-representation in V / U s.t.

$$
g \cdot(v+U)=g \cdot v+U \quad \forall g \in C, v \in V .
$$

Remark: We use the notation of the previous remark. Note that vectors $v_{k+1}+U, \ldots, v_{n}+U$ form a basis in V / U. In this basis the operator $g v / u$ is given by the matrix D_{g}.

So once we know the representations in $U, V / U$, we get 7
partial info about V-we know A_{g} and D_{g} (but not B_{g}). Well see below that Maschre's The mentioned in Lee 1,
Sec 2, can be stated as follows: under its assumptions char $\mathbb{F}=0,|G|<\infty$, we can choose $V_{1}, \ldots v_{n}$ s.t. $B_{g}=0, \forall g \in G$.
2.4) Pullbacks under group homomorphisms.

Let $\varphi: H \rightarrow G$ be a group homomorphism and V be a representation of G via $p: G \rightarrow G L(V)$. Then we can view V as a representation of H via $p \circ \varphi: H \rightarrow G L(V)$. We sometimes call the resulting representation of H the pullback (of V to H).

Remark: One situation when we apply this construction is when H is a subgroup of G and $\varphi: H \rightarrow C$ is the inclusion. Then one talks about the restriction of representation of G to H. One can try to understand the representations of G via this techique (for suitable H). Well see this in some homework problems.

3*) More on "from actions to representations".
The construction of a representation of C in $\operatorname{Fun}(X, \mathcal{F})$ is useful to study representations of finite groups but not much beyond that - after all how interesting ave functions on a finite set? However, the construction often applies when we consider (finite or infinite) group actions on infinite sets and look at certain nice functions. What we may want to do includes the following:
(I) Use the representation to understand the space of functions (Harmonic Analysis)
(II) Identify and study functions that play a special role for the representation of G in Fun (X, \mathbb{F}).

Below we will outline one example of (I) and two examples of (II).
2.1) Subalgebras of invariants.

This is an example of (II). Suppose that we are in
the situation of $\operatorname{Sec} 1$. Note that $f \in \operatorname{Fun}(X, \mathbb{F})^{G}$ iff f is constant on G-orbits - from the definition of the S-action on $\operatorname{Fun}(X, \mathbb{F})$.
(*) So $x, y \in X$ are in the same G-orbit iff

$$
f(x)=f(y) \quad \forall f \in \operatorname{Fun}(x, \mathbb{F}) .
$$

In many situations we want to know when two points are in the same orbit, for example, in Linear algebra this occurs in the investigation of "canonical forms." However, (*) above is useless for such purposes: the arbitrary functions on an infinite set are out of control.

In the situations of interest for Linear algebra (such as the classification of square matrices up to conjugation) X is a finite dimensional vector space and C acts linearly. It makes sense to spear about "polynomial functions" on X. By definition, these are functions that are polynomials in the coordinates w.r.t. some basis. Note that the linear changes of variables send polynomials to polynomials, so this definition doesn't depend an the choice of a basis.

Denote the space of polynomial functions on X by $\mathbb{F}[X]$, this is a subspace of Fun (X, \mathbb{F}). Moreover, it is a subrepresentation of Fun (X, \mathbb{F}) : precisely because any linear change of variables sends a polynomial to a polynomial. So one can consider the subspace $\mathbb{F}[x]^{h}$ of G-invariant polynomials. In order for the polynomial functions to be meaningful, assume \mathbb{F} to be infinite.

Example: Let $C=S_{n}$ and X be its permutation representation \mathbb{F}^{n} Let $x_{1}, \ldots x_{n}$ be the default coordinates on $X=\mathbb{F}^{n}$. The elements of $\mathbb{F}[x]^{G}$ ave exactly the polynomials in $x_{1}, \ldots x_{n}$ that do not change under any change of variables, i.e. the symmetric polynomials.

Representation theory greatly helps to study the subspace (in fact, the subalgebra) $\mathbb{F}[x]^{\natural}$. Assume, for simplicity, that char $\mathbb{F}=0$. Later in the course we will elaborate (as a bonus) on the following claim: 11

If G is "reductive" (this includes all finite groups), then $\mathbb{E}[x]^{G}$ is finitely generated.

Remand: in general, it's no longer twi that $f(x)=f(y) \quad \forall f \in \mathbb{F}[x]^{h} \Rightarrow C x=C y$. For example, take $X=\mathbb{F} \& \quad G=\mathbb{F}^{x}$ (i.e $\mathbb{F} \mid\{0\}$ w.r.t. multiplication) acting on X via g.x=gx. In this case we have two orbits (zero \& nonzero), while the only invariant polynomials are scalars (exercise). However if G is finite, then the implication above is true, which is a somewhat harder exercise - on interpolation polynomials.
2.2) Harmonic analysis.

This is a manifestation of (I). Let's say G acts on X and we consider the corresponding representation in a space \mathcal{F} that looks like the space of functions (for X finite we just take $\mathcal{F}=\operatorname{Fun}(X, \mathcal{F})$ but for infinite X we need to modify $)$. We want to decompose an arbitrary function as a (finite or 12
infinite) sum of "nice "functions.
Here is the most classical special case. Let $G=\{z \in \mathbb{C} \mid$ $|z|=1\}$, this is a group w.r.t. multiplication. We can identify $G \quad w$. the quotient group $\mathbb{R} / 2 \pi \mathbb{Z}$ vie $x \in \mathbb{R} \mapsto e^{\sqrt{-1} x}$. Take $X=G, \mathbb{F}=\mathbb{C}$ and consider the action of G on X by maul. tiplications.

Exercise: For $n \in \mathbb{Z}$, consider the function $x \mapsto e^{n \sqrt{-1} x}: X \rightarrow \mathbb{C}$ The 1 -dimensional subspace spanned by this function is a subrepresentation of $\operatorname{Fun}(X, \mathbb{C})$.

We want to present an element of \mathcal{F} (a space related to Fun (X, \mathbb{C})) as a (possibly infinite) linear combination of the functions $e^{n \sqrt{-1} x}$. Of course, if the sum is infinite, it should converge in a suitable sense. Analysis comes into play and tells us that the best space to consider is $L^{2}(X)$ - Lebesgue square-integrable functions cor, more precisely, equivalence classes of such functions). Of course, the presentation of $f \in L^{2}(X)$ as an infinite linear combination
of the functions $e^{n \sqrt{-1 x}}$ is the Fourier expansion, one of the most fundamental techniques in Analysis.

A nice feature of the previous example that each sumand $e^{n \sqrt{-1} x}$ is in its own irreducible representation and the representations for different n are pairwise distinct. In other words, $L^{2}(X)$ decomposes as some kind of direct sum of pairwise distinct irreducible representations. This is known as a "multiplicity 1 result."

There is a number of other settings when we have such multiplicity 1 result, For example, we can take G to be $\mathrm{SO}_{n}(\mathbb{R})$, the group of orthogonal matrices w. de $=1$. It acts an \mathbb{R}^{n} preserving the unit sphere $\left\{\left(x_{1}, \ldots x_{n}\right) \mid \sum x_{i}^{2}=1\right\}$. We take this sphere for X. The representation of G in $L^{2}(X)$ is also multiplicity free.

This circle of questions was studied in MATH 628, Harmonic Analysis in F22.
2.3) Modular forms

Here is another important manifestation of (II)-modular forms. Our reference here is Serve "A Course in Arithmetic", Ch VII. Our X here is the upper half-plane: $X=\{z \mid \operatorname{Im} z>0\}$. It is acted on by the group $S L_{2}(\mathbb{R})$ of real 2×2 matrices w. $\operatorname{det}=1:\left(\begin{array}{ll}a & b \\ c & \alpha\end{array}\right) . z=\frac{a z+b}{c z+\alpha}$ (and $1 s$, actually, a single orbit). We take $G=S L_{2}(\mathbb{Z})$, the subgroup of G of all matrices w. integral entries. Our \mathcal{F} is the space of all holomorphic (= complex differentiable) functions. It is a representation of $S L_{2}(\mathbb{R})$ and hence of G.

We say that $f \in \mathcal{F}$ is weakly modular of weight $2 k$ (in Serve's convention) if

$$
f\left(\frac{a z+6}{c z+\alpha}\right)=(c z+\alpha)^{2 k} f(z) \quad \forall\binom{a b}{c \alpha} \in G .
$$

Note that for $\left(\begin{array}{ll}a & b \\ c & \alpha\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, this condition translates to $f(z+1)=f(z)$ so f can be expressed as a function of $q:=e^{2 \pi \sqrt{-1} z}$. If f has limit as $q \rightarrow 0$, it's called a modular form.

Modular forms (and their generalizations such as auto-
morphic forms) play a very important vole in Number theory, Serve's book gives a brief intro to why. And their modern study (say, in Langlands program) is heavily based on Representation theory - but this for beyond this course.
\qquad

