Lecture 22: Finite dimensional associative algebras, IV.

1) Description of submodules

2) Proof of Density Theorem

Ref: [E], Secs 3.1, 3.2.

1) Description of submodules

1.1) Main result.

Let \mathbb{F} be a field, A be an associative \mathbb{F}-algebra. Let U_1, \ldots, U_k be pairwise non-isomorphic finite dimensional irreducible A-modules, $S_i := \text{End}_A(U_i)^{op}$ (so that U_i is also a right S_i-module and the A- and S_i-actions on U_i commute).

Let $M_i, i = 1, \ldots, k$, be a finite dimensional left S_i-module.

So $\bigoplus_{i=1}^k U_i \otimes_{S_i} M_i$ becomes a left A-module (with A acting on $U_i \otimes_{S_i} M_i$ via $a(u \otimes m) = au \otimes m$).

We start by constructing a family of A-submodules of $\bigoplus_{i=1}^k U_i \otimes_{S_i} M_i$. Let N_i be an S_i-submodule of M_i. By Sec 1.2 of Lec 21, we can view $U_i \otimes_{S_i} N_i$ as an \mathbb{F}-subspace of $U_i \otimes_{S_i} M_i$. From the construction of the A-action on $U_i \otimes_{S_i} M_i$
we see that $U_i \otimes_{S_i} N_i$ is an A-submodule in $U_i \otimes_{S_i} M_i$.
So $\bigoplus_{i=1}^{k} U_i \otimes_{S_i} N_i$ is an A-submodule of $\bigoplus_{i=1}^{k} U_i \otimes_{S_i} M_i$.

Proposition: Every A-submodule $V' \subset V := \bigoplus_{i=1}^{k} U_i \otimes_{S_i} M_i$ has the form $\bigoplus_{i=1}^{k} U_i \otimes_{S_i} N_i$ for some S_i-submodules $N_i \subset M_i$.

Proof: Let’s discuss the idea first. We know that we have natural isomorphisms (Sec 2 of Lec 21)
\[
\psi: \bigoplus_{i=1}^{k} U_i \otimes_{S_i} \text{Hom}_{A}(U_i, V) \rightarrow V
\]
\[
\psi': \bigoplus_{i=1}^{k} U_i \otimes_{S_i} \text{Hom}_{A}(U_i, V') \rightarrow V'.
\]
Next, $\text{Hom}_{A}(U_i, V')$ embeds as an S_i-submodule into $\text{Hom}_{A}(U_i, V)$. The proof is then checking the details, and in particular matching various identifications.

Step 1: We claim that M_i is identified w. $\text{Hom}_{A}(U_i, V)$. Namely, $\text{Hom}_{A}(U_i, V) = \left[\text{Hom}_{A}(U_i, U_j) = 0 \text{ for } i \neq j \right] = \text{Hom}_{A}(U_i, U_i \otimes_{S_i} M_i)$. For $m \in M_i$ consider $\varphi_m: U_i \rightarrow U_i \otimes_{S_i} M_i$, $\varphi_m(u) = u \otimes m$, an A-linear map; $m \mapsto \varphi_m$ is an S_i-linear map.
\[M_i \to \text{Hom}_A(U_i, U_i \otimes_{S_i} M_i), \text{ where } S_i = \text{End}_A(U_i)^{\text{opp}} \text{ acts on the target} \]
by taking compositions on the right, & it's injective (these are left as exercise, for the injectivity use a description of a basis in \(U_i \otimes_{S_i} M_i \), Sec 2.2 in Lec 21). Now note that if \(\dim_{S_i} M_i = n \), then \(U_i \otimes_{S_i} M_i \cong U_i^{\otimes n} \), so \(\dim \text{Hom}_A(U_i, U_i \otimes_{S_i} M_i) = n \dim \text{Hom}_A(U_i, U_i) = n \dim S_i = \dim Hom M_i. \)
So \(\imath \mapsto \varphi_{\imath}: M_i \rightarrow \text{Hom}_A(U_i, V). \)

Step 2: Recall, Sec 2 of Lec 21, that for an arbitrary finite direct sum \(V \) of \(U_i \)'s, we have
\[\psi: \bigoplus_{i=1}^{k} U_i \otimes_{S_i} \text{Hom}_A(U_i, V) \rightarrow V, \sum_{i=1}^{k} u_i \otimes \varphi_i \mapsto \sum_{i=1}^{k} \varphi_i(u_i) \]

Thus to Step 1, for \(V = \bigoplus_{i=1}^{k} U_i \otimes_{S_i} M_i \), we also have
\[\xi: V \rightarrow \bigoplus_{i=1}^{k} U_i \otimes_{S_i} \text{Hom}_A(U_i, V), \sum_{i=1}^{k} u_i \otimes m_i \mapsto \sum_{i=1}^{k} u_i \otimes \varphi_{m_i} \]
Since \(\varphi_{m_i}(u) = u \otimes m_i \), we have \(\psi \xi = \text{id}_V \Rightarrow \xi = \psi'. \)

Step 3: Consider \(N_i := \text{Hom}_A(U_i, V') = \{ \varphi \in \text{Hom}_A(U_i, V) | \imath \mapsto \varphi \in V' \} \)
This is a subspace in \(M_i = \text{Hom}_A(U_i, V). \) Moreover, it's an \(S_i \)-submodule: \(S_i = \text{End}_A(U_i)^{\text{opp}} \text{ acts on } \text{Hom}_A(U_i, V) \) by \(s \varphi = \varphi \circ s \), so
We claim that $V' = \bigoplus_{i=1}^{k} U_i \otimes_{S_i} N_i$, which will finish the proof. Indeed, let $\psi': \bigoplus_{i=1}^{k} U_i \otimes_{S_i} N_i \to V'$ be the analog of ψ for V'. The following diagram commutes by the construction of ψ (and ψ'):

\[
\begin{array}{ccc}
\bigoplus_{i=1}^{k} U_i \otimes_{S_i} N_i & \xrightarrow{\psi'} & V' \\
\downarrow & & \downarrow \\
\bigoplus_{i=1}^{k} U_i \otimes_{S_i} M_i & \xrightarrow{\psi} & V
\end{array}
\]

The vertical maps are inclusions, and we identify M_i with $\text{Hom}_A(U_i, V)$ as in Step 1. In particular, we see that V' is indeed of the form $\bigoplus_{i=1}^{k} U_i \otimes_{S_i} N_i$ for S_i-submodules $N_i \subset M_i$. \(\Box\)

Exercise: Show that $\bigoplus_{i=1}^{k} U_i \otimes_{S_i} N_i = \bigoplus_{i=1}^{k} U_i \otimes_{S_i} N'_i$ (for submodules $N_i, N'_i \subset M_i$) implies $N_i = N'_i$ for i (hint: use bases in tensor products introduced in Sec 1.2 of Lec 21). This shows that N_i's in Proposition are uniquely recovered from V'.

Remark: Thx to Sec 2 of Lec 21, Proposition describes submodules in an arbitrary completely reducible module.
2) Proof of Density Theorem.

2.1) Statement

The theorem was stated in Sec 3 of Lec 10.

Theorem: Let A be an associative algebra and U_1, \ldots, U_k be its pairwise nonisomorphic finite dimensional irreducibles. Let $S_i := \text{End}_A(U_i)_{\text{opp}}$ and let $\varphi_i : A \to \text{End}_F(U_i)$ be the homomorphism corresponding to the A-module U_i. Then the image of $(\varphi_1, \ldots, \varphi_k)$ is $\bigoplus_{i=1}^k \text{End}_{S_i}(U_i)$.

Before we get to the proof, let’s record

Corollary/Exercise: Suppose that $\text{dim}_F A < \infty$. Then the number of irreducible (automatically, finite dimensional) A-modules (up to iso) is $\leq \text{dim} A$.

2.2) Proof of Density Theorem

Again, let’s start w. an idea. We’ll identify $\bigoplus_{i=1}^k \text{End}_{S_i}(U_i)$
\[\bigoplus_{i=1}^{n} U_i \otimes S_i U_i^* \] and then use Proposition to show that
\[\text{im} \varphi = \bigoplus_{i=1}^{n} U_i \otimes S_i N_i \] for \(N_i \subset U_i^* \). If \(N_i \not\subset U_i^* \) for some \(i \), then, as we'll check, every element of im \(\varphi \) annihilates a nonzero vector in \(U_i \). This will give a contradiction.

Step 1: Analogously to Sec 13 of Lec 21, for a right \(S \)-module \(U \) (w. \(\dim_U U < \infty \)) we have an isomorphism

\[(*) \quad U \otimes_S U^* \sim \text{End}_S(U). \]

Here \(U^* = \text{Hom}_S(U, S) \), we identify \(U \) w. \(\text{Hom}_S(S, U) \) via \(u \mapsto [s \mapsto us] \). Then \((*)\) is given by

\[\psi \otimes u \mapsto \psi \circ u, \quad \psi \in \text{Hom}_S(S, U), \quad u \in \text{Hom}_S(U, S). \]

Step 2: Suppose now \(U \) is a left \(A \)-module in such a way that the actions of \(A \& S \) commute. So \(U \otimes_S U^* \) acquires a left \(A \)-module structure via \(a(u \otimes \alpha) = au \otimes \alpha \), \(\text{End}_S(U) \) is also a left \(A \)-module: via

\[a \gamma = a \circ \gamma, \quad a \in A, \quad \gamma \in \text{End}_S(U). \]

It's left as an exercise to check that \((*)\) is an \(A \)-
module homomorphism.

Step 3: So, as an A-module,

$$\bigoplus_{i=1}^{k} \text{End}_{S_i}(U_i) = \bigoplus_{i=1}^{k} U_i \otimes_{S_i} M_i, \ M_i : = U_i^*.$$

Note that $\text{Im} \varphi < \bigoplus_{i=1}^{k} \text{End}_{S_i}(U_i)$ is an A-submodule.

By Proposition in Sec 1, \(\exists \ N_i \subset M_i = U_i^* \) s.t.

$$\text{Im} \varphi = \bigoplus_{i=1}^{k} U_i \otimes_{S_i} N_i.$$

We need to show that $N_i = M_i \not\supset i$. Assume the contrary: $N_i \subsetneq M_i$.

Step 4: We claim $\exists \ \upsilon \in U_i$ s.t. $\alpha(\upsilon) = 0 \ \forall \ \alpha \in N_i$.

For this, observe first that $U_i \rightarrow U_i^{**}$, $u \mapsto \beta_u$, w. $\beta_u(\alpha) = \alpha(u)$ — just as for fields. Choose a basis $\xi, ..., \xi_n$ in N_i (over S) and complete it to a basis $\xi, ..., \xi_n$ in U_i^* ($n \geq m$). Let

$\xi_1, ..., \xi_n$ be the dual basis in U_i (given by $\alpha_k(\xi_j) = \delta_{kj}$, it exists due to $U_i \rightarrow U_i^{**}$). Then take $\upsilon = \xi_n$.

Step 5: Under the identification $U_i \otimes_{S} U_i^* \rightarrow \text{End}_{S}(U_i)$
all elements from $U_i \otimes N_i$ annihilate $v : (u \otimes 2)(v) = a(u)u = 0$.

By Step 3, so do the elements of $\text{im} \varphi$. Contradiction

$\varphi(1) = 1$. \square

2.3) Application: classification of (semi) simple algebras.

The following summarizes two theorems from Lec 19

Theorem: 1) Every finite dimensional semisimple algebra A is isomorphic to $\bigoplus_{i=1}^k \text{Mat}_{n_i}(S_i)$, where S_i is a finite dimensional F-algebra.

2) Every finite dimensional simple algebra A is isomorphic to $\text{Mat}_n(S)$ for uniquely determined $n \& S$.

Proof: 1) Let U_1, \ldots, U_k be all pairwise non-isomorphic irreducible A-modules. $S_i := \text{End}_A(U_i)^{op}$, $\varphi_i : A \rightarrow \text{End}_F(U_i)$. Let $\varphi = (\varphi_1, \ldots, \varphi_k) : A \rightarrow \bigoplus_{i=1}^k \text{End}_F(U_i)$. By Density theorem, $\text{im} \varphi = \bigoplus_{i=1}^k \text{End}_{S_i}(U_i)$. Choosing an S_i-basis in each U_i, we identify $\text{End}_{S_i}(U_i) \cong \text{Mat}_{n_i}(S_i)$ w. $n_i = \dim_{S_i} U_i$. So, it
remains to show that \(q \) is injective. Indeed, any element \(a \in k \) acts by \(0 \) on every direct sum of irreducibles, hence, in particular, on \(A \). But \(a1 = a \Rightarrow a = 0 \).

2): By 1) of Theorem in Sec 1.1 ofLEC 20, we know that \(A \) is semisimple w. unique irreducible module \(U \). So, by 1) (\& its proof), \(A = \text{End}_S(U) = \text{Mat}_n(S) \) for \(n = \dim_k U = \dim_k U / \dim_k S \).

Let’s show that \(A \cong \text{Mat}_n(\tilde{S}) \) for some skew-field (\& finite dimensional \(F \)-algebra \(S \)) \(\Rightarrow \tilde{S} \cong \text{End}_A(U)^{op} \) for the unique irreducible module \(U \). Indeed, we get \(U \cong \tilde{S}^n \). We need to show that any \(\text{Mat}_n(\tilde{S}) \)-linear map \(\tilde{S}^n \rightarrow \tilde{S}^n \) is given as the right multiplication by a unique element of \(\tilde{S} \). This is left as an exercise (hint: prove that \(y \begin{pmatrix} \tilde{x}^1 & \cdots & \tilde{x}^n \end{pmatrix} = \begin{pmatrix} \tilde{y}^1 & \cdots & \tilde{y}^n \end{pmatrix} \) for a unique \(\tilde{y}^i \in \tilde{S} \), then show that \(yv = \tilde{y}^i v \neq v \in \tilde{S}^n \)). \(\square \)

Remark: There’s also a uniqueness statement in 1): the collection \((S_i, n_i)_{i=1}^k \) is defined uniquely up to a permutation.
2.4) Bonus: Wedderburn–Artin theorem

One can generalize Theorem in Sec 2.3 from algebras to more general rings. Namely, by a semisimple ring we mean an associative ring A whose regular module is a finite direct sum of irreducible modules. Then every finitely generated A-module is completely reducible.

The Wedderburn–Artin theorem states that

$$A \cong \bigoplus_{i=1}^{k} \text{Mat}_{n_i}(S_i)$$

for some skew-fields S_i.