Lecture 25: Skew-fields, II.

1) Structure of skew-fields.
2) Finite skew -fields.
3) Bonus: Braver group

Ref: [v], Sec 11.6.
1.0) Recap

Suppose $\sqrt[F]{ }$ is a field and S is a finite dimensional central \mathbb{F}-algebra that is a skew-field. Our goal is to prove:

Theorem: Suppose char $\mathbb{F}=0$. Then the following claims hold:

1) $\#$ maximal subfield $K^{1} K^{2} \subset S$, have $\operatorname{dim}_{F} K^{1}=\operatorname{dim}_{F} K^{2}$.
2) if the dimension in 1) is n, then $\operatorname{dim}_{F} S=n^{2}$.
3) Let K^{1}, K^{2} be maximal subfield and $\tau: K^{1} \leadsto K^{2}$ be an \mathbb{F}-linear isomorphism. Then $\exists s \in S|\{0\}| \tau(x)=5 x 5^{-1} \forall x \in K^{\prime}$.
1.1) Approach to proof.

To prove the theorem well use the base change to the
algebraic closure $\overline{\mathbb{F}}$ of \sqrt{F} (meaning that $\mathbb{F} \subset \overline{\mathbb{F}}, \overline{\mathbb{F}}$ is algerraically closed, and any element $x \in \sqrt{F}$ is algebraic over $\sqrt[F]{ }$).

The proof is in two big steps. Recall that for an \mathbb{F}-algebra A, we write $A_{\bar{F}}:=A \otimes_{\sqrt[F]{ }} \overline{\mathbb{F}}$ for its base change.

The following proposition shows that base change preserves certain properties.

Proposition: Suppose char $\sqrt{F}=0$, and \widetilde{F} is e field extension of \mathbb{F} :

1) If A is semisimple, then so is $A_{\tilde{F}}$.
2) If A is central simple, then so is $A_{\tilde{F}}$.
3) If $B \subset A$ is a maximal commutative subalgebra, then so is $B_{\tilde{\mathcal{F}}} \subset A_{\tilde{F}}$.

Using this we will show that $S_{\overline{\mathbb{F}}} \simeq \operatorname{Mat}_{n}(\overline{\mathbb{F}})$, while $K_{\bar{F}}^{i}$ $c \operatorname{Mat}_{n}(\overline{\mathbb{F}})$ are subalgebras conjugate to the subalgebre of diagonal matrices. This will establish 1) \& 2) of Theorem, while 3) will require a bit more work.
1.2) Proof of 1) of Proposition.

We use Theorem from Sec 1.2 of Lee 23: over a field of char 0 , an algebra is semisimple iff the trace form is nondegenerate. Recall that, for $a, b \in A$, we have $(0, b)_{A}=\operatorname{tr}\left((a b)_{A}\right)$. Next, $A \subset A_{\overline{\mathcal{F}}}$ \& any \sqrt{F}-basis of A is an \bar{F}-basis of $A_{\bar{F}}$. So, for all $x \in A$, the matrices of operators $X_{A} \& X_{A_{\bar{F}}}$ are the same $\left(b / c A \subset A_{\bar{F}}\right.$ is a subring). So $(c, b)_{A}=\operatorname{tr}\left((a b)_{A}\right)=\operatorname{tr}\left((a b)_{A_{\vec{F}}}\right)=(a, b)_{A_{\bar{A}}}$. In particular, in a basis of A, the matrices of the trace forms for $A_{1}, A_{\bar{F}}$ are the same, therefore, one form is nondegenerate of the other is. ©

Remarks: 1) Let $\mathbb{F}=\mathbb{F}_{p}\left(t^{p}\right), \tilde{F}=A=\mathbb{F}_{p}(t)$ (fields of rational functions). Then $A_{\tilde{F}}$ is not semisimple (exeruse*)
2) Suppose that \tilde{F} is an algebraic and separable extension of \mathbb{F}. Then $\operatorname{Rad}\left(A_{\tilde{F}}\right)=\operatorname{Rad}(A)_{\tilde{F}}$ (exercise*, hint: reduce to the case when \widetilde{F} is a finite \& normal extension and consider the natural action of $\operatorname{Cal}(\tilde{F}: \sqrt[F]{ })$ on $A_{\mathbb{F}}$.
1.3) Proofs of 2) and 3) of Proposition.

Lemma: Let $\mathbb{F} \subset \widetilde{\mathbb{F}}$ be a field extension, A be a finite dimensional \mathbb{F}-algebra, $B \subset A$ a subspace. Set $Z_{A}(B):=\{c \in A \mid a b=b a$ $\forall 6 \in B\}$. Then $Z_{A}(B)_{\tilde{F}}=Z_{A_{\tilde{F}}}\left(B_{\tilde{F}}\right)$

Proof:
Claim: Let U, V be fin dim. \mathbb{F}-vector spaces \& $\varphi: U \rightarrow V$ an \mathbb{F}-linear map. Consider $\tilde{\varphi}: U_{\tilde{F}}=U \otimes_{\mathbb{F}} \widetilde{F} \rightarrow V_{\widetilde{F}}=V_{\mathbb{F}} \widetilde{F}$, the unique $\widetilde{\mathbb{F}}$ linear map w. $\tilde{\varphi}(u \otimes f)=\varphi(u) \otimes f, \forall u \in U, f \in \widetilde{\mathbb{F}}$. Then $\operatorname{ker} \tilde{\varphi}=(\operatorname{ker} \varphi)_{\tilde{F}}$.

Proof: exercise (hint: pick bases $u_{1} \ldots u_{n} \in U, v_{1}, \ldots, v_{m} \in V$ s.t. $u_{k+1} \ldots u_{n}$ is a basis in $\left.\operatorname{ker} \varphi, v_{i}=\varphi\left(u_{i}\right), i=1, \ldots k\right)$.

We apply Claim as follows. Let $\sigma_{1}, \ldots G_{k}$ be a basis in B. Consider $U=A, V=A^{\oplus k}, \varphi(u)=\left(b_{i} u-u b_{i}\right)_{i=1}^{k}$. Then

$$
\operatorname{ker} \varphi=\left[\left\{a \in A \mid a b_{i}=b_{i} a \forall i=1, \ldots\right]=\left[b_{1, \ldots} b_{k} \text { is } b_{a s i s} \text { of } B\right]=Z_{A}(B)\right. \text {. }
$$

Then $\operatorname{ker} \tilde{\varphi}=\left[b_{1, \ldots} \sigma_{k}\right.$ form $\tilde{\mathbb{F}}-b_{a} \operatorname{sis}$ in $\left.B_{\tilde{F}}\right]=Z_{A_{\tilde{F}}}\left(B_{\tilde{F}}\right)$.

Proof of 2) of Proposition: By 1) of Proposition, $A_{\tilde{\pi}}$ is semismple.
So $A_{\tilde{\mathbb{F}}} \simeq{\underset{i}{\oplus}}_{\underline{k}} M_{a} t_{n ;}\left(S_{i}\right)$, where S_{i} 's are skew-fields. By Exerase in $\operatorname{Sec} 2$ of $\operatorname{Lec} 23, Z\left(A_{\tilde{\mathbb{F}}}\right) \simeq \bigoplus_{i=1}^{\dot{\theta}} Z\left(\operatorname{Mat}_{n_{i}}\left(S_{i}\right)\right)$.

By Lemme applied to $B=A, Z\left(A_{\tilde{F}}\right)=Z(A)_{\widetilde{F}}=[Z(A)=\mathbb{F}$ b/c A is central $]=\widetilde{\mathbb{F}}$. It follows that $k=1 \& Z\left(\operatorname{Mat}_{n}\left(S_{1}\right)\right)=\widetilde{F}$, which gives the claim of 2).

Proof of 3) of Proposition: The claim that B is maximal commutative is equivalent to $Z_{A}(B)=B$ (and same for $B_{\tilde{\mathbb{F}}} \subset \Lambda_{\tilde{\mathbb{F}}}$). Indeed, if $x \notin Z_{A}(B) \mid B$, then the subalgebre generated by $B \&$ $x\left(:=\operatorname{Span}_{\mathbb{F}}\left(6 x^{i} \mid 6 \in B, i \geqslant 0\right)\right)$ is commutative and strictly contains B, contradicting the maximality of B.

Now apply Lemme to $B \subset A: Z_{A \tilde{F}}\left(B_{\tilde{F}}\right)=Z_{A}(B)_{\tilde{F}}=B_{\widetilde{F}}$.
1.4) Proofs of 1) \& 2) of Theorem

Let $K \subset S$ be a maximal subfield (= commutative subalgebra) By 2) of Proposition, $S_{\bar{F}}$ is simple, and so is Matt $(\overline{\mathbb{F}})$ bc $\overline{\mathbb{F}}$ is algebraically closed. Let $D_{n}(\mathbb{F})$ denote the subalgebra of
diagonal matrices. We claim that $K_{\bar{F}}$ is conjugate to $D_{n}(\mathbb{F})$ (i.e. $\exists g \in G L_{n}(\overline{\mathbb{F}}) \mid K_{\overline{\mathbb{F}}}=g D_{n}(\overline{\mathbb{F}}) g^{-1}$). This will imply 1) \& 2).

By 1) of Proposition, $K_{\overline{\mathbb{F}}}$ is semismple \& by 3), it's maximal commutative. Any semisimple algebra is of the form $\bigoplus_{i=1}^{k} \operatorname{Met}_{n_{i}}(\overline{\mathbb{F}})$, it's commutative of all $n_{i}=1$. Consider the $\operatorname{Mat}_{n}(\overline{\mathbb{F}})$-module \bar{F}^{n} as a $K_{\bar{F}}$-module. It's the direct sum of irreducible $K_{\bar{F}}$-modules, all of which ave 1-dimensional: $\overline{\mathcal{F}}^{n}=\bigoplus_{i=1}^{n} V_{i}$. Choose $g \in C L_{n}(\overline{\mathbb{F}}) w$. $g e_{i} \in V_{i}$ (where $e_{1}, \ldots e_{n}$ are the tautological basis elements), then $K_{\overline{\mathbb{F}}} \subset g D_{n}(\overline{\mathbb{F}}) g^{-1}$. Since $D_{n}(\overline{\mathbb{F}})$ (and hence $g D_{n}(\overline{\mathbb{F}}) g^{-1}$) is a commatative subalgebre \& $K_{\overline{\mathcal{F}}}$ is maximal commutative, we have

$$
K_{\overline{\mathbb{F}}}=g D_{n}(\overline{\mathbb{F}}) g^{-1} .
$$

1.5) Proof of 3) of Theorem.

Let $K_{1}^{1} K^{2} \subset S$ be maximal subfrelds. Consider $\tilde{\tau}: K_{\bar{F}}^{1} \xrightarrow{\rightarrow} K_{\bar{F}}^{2}$, $\tilde{\tau}(k \otimes f)=\tau(k) \otimes f$, this is an \widetilde{F}-algebra isomorphism.

Step 1: we claim that $\exists g \in C L_{n}(\overline{\mathbb{F}})$ s.t $\tilde{\tau}(x)=g \times g^{-1}, x \in K^{1}$. Note that $K_{\bar{F}}^{i} \simeq \bigoplus_{i=1}^{n} \operatorname{Met},(\overline{\mathbb{F}})=\overline{\mathbb{F}}^{\oplus n}$ has exactly n pairwise non-isomorphic 1-dimensional irreducible representations, denote 6
them by $V_{1}^{i} \ldots V_{n}^{i}, i=1,2$. We have the decompositions

$$
\overline{\mathbb{F}}^{n}=\bigoplus_{j=1}^{n} V_{j}^{1}=\bigoplus_{j=1}^{n} V_{j}^{2}:
$$

if $K_{\overline{\mathbb{F}}}^{i}=g_{i} D_{n}(\mathbb{F}) g_{i}^{-1}, g \in S_{n}(\mathbb{F})$, then we can pick $V_{j}^{i}=\sqrt[F]{ }\left(g_{i} e_{j}\right)$.
Let $\varphi_{j}^{i}: K_{\bar{F}}^{i} \rightarrow \operatorname{End}\left(V_{j}^{i}\right)=\bar{F}$ be the corresponding homomorphisms: $K_{\bar{F}}^{i} \simeq \overline{\mathbb{F}}^{\oplus n}$ as an algebra and φ_{j}^{i} 's are projections to the summands, $j=1, \ldots n$. The homomorphisms $\varphi_{j}^{2} \circ \widetilde{\tau}$ correspond to n pairwise non-isomorphic 1 -dimensional representations of $K_{\sqrt{F}}^{1}$, and so, after renumbering φ_{j}^{2} 's we can assume that
(1)

$$
\varphi_{j}^{2} \circ \tilde{\tau}=\varphi_{j}^{1} \quad \forall j=1, \ldots n
$$

Take $g=g_{2} g_{1}^{-1} \Rightarrow g K_{\bar{F}}^{1} g^{-1}=g_{2} D_{n}(\mathbb{F}) g_{2}^{-1}=K_{\bar{F}}^{2}$. Moreover, for $x \in K_{\bar{F}}^{1}, x$ acts on $g_{1} e_{j}$ by scalar $\varphi_{j}^{1}(x)$, so $g x g^{-1}$ acts on $g_{2} e_{j}=g g_{1} e_{j}$ by $\varphi_{j}^{1}(x)$ and, on the side, $g x g^{-1} \in K_{\mathbb{F}}^{2}$ acts on $g_{2} e_{j}$ by $\varphi_{j}^{2}\left(g \times g^{-1}\right) \Rightarrow \varphi_{j}^{1}(x)=\varphi_{j}^{2}\left(g \times g^{-1}\right)$. Combining this w. (1) we see that
(2) $\quad \varphi_{j}^{2}(\tilde{\tau}(x))=\varphi_{j}^{2}\left(g \times g^{-1}\right) \forall x \in K_{\vec{F}}^{1}$.

But φ_{j}^{2} is the projection $\sqrt{F}^{\oplus n} \rightarrow \sqrt{F}$ to the fth summand. So

$$
\varphi_{j}^{2}\left(g \times g^{-1}\right)=\varphi_{j}^{2}(\tilde{\tau}(x)) \forall j=1, \ldots, n \Rightarrow g x g^{-1}=\tilde{\tau}(x) \Rightarrow
$$

(3) $g x=t(x) g \forall x \in K^{1}$.

Step 2: Now we prove the original claim: $\exists s \in S \backslash\{0\}$ $\tau(x)=s \times 5^{-1} \forall x \in K^{1}$. Pick a basis $x_{1}, \ldots x_{n} \in K$ (over \mathbb{F}) and consider the \mathbb{F}-linear map $\varphi: S \rightarrow S^{n}, y \mapsto\left(y x_{i}-\tau\left(x_{i}\right) y\right)$ and the induced linear map $\tilde{\varphi}: S_{\bar{F}} \rightarrow S_{\bar{F}}^{n}$. Recall (Claim in $\operatorname{Sec} 1.3)$ that $\operatorname{ker} \tilde{\varphi}=(\operatorname{ker} \varphi)_{\bar{F}}$. We know that g (viewed as a matrix, ie. an element of $S_{\bar{\pi}}$) is in $\operatorname{ker} \tilde{\varphi}$ by (3). So $\operatorname{ker} \varphi \neq\{0\}$. Take any $s \in k e r \varphi \backslash\{0\}$. It's invertible $6 / c S$ is a skew-field so $s x=\tau(x) s \Rightarrow S \times s^{-1}=\tau(x)$.
2) Finite skew-fields

In general, it's hard to classify finite dimensional skew-fields S over \mathbb{F}, so $\mathbb{F}=\mathbb{R}$ is an exception. Another nice case is when \mathbb{F} is finite. Here S is also finite.

Theorem (Wedderburn) Every finite skew-field S is commutative Proof:

Can take $\mathbb{F}=Z(S)$, let $|\mathbb{F}|=q$. Let $n:=\operatorname{dim}_{F} S \Rightarrow|S|=q$!. Assume $\mathbb{F} \neq S \Leftrightarrow n>1$. Let $G=S \mid\{0\}$ be the multiplicative 8
group. Let $S_{1}, \ldots S_{k}$ be representatives of the G-conjugacy classes in $G|Z(G)=S| \mathbb{F}$. Then
(4)

$$
|G|=|Z(G)|+\sum_{i=1}^{k}|G| /\left|Z_{G}\left(S_{k}\right)\right|
$$

Note that $Z_{G}\left(s_{k}\right)=Z_{S}\left(s_{k}\right) \mid\{0\}$. Let $\alpha_{k}:=\operatorname{dim}_{\text {FF }} Z_{S}\left(s_{k}\right)$ $\Rightarrow\left|Z_{G}\left(S_{k}\right)\right|=q^{\alpha_{k}}-1$. Next, note that $Z_{S}\left(S_{k}\right)$ is a skewfield, and S is its finite dimensional module $\Rightarrow S \simeq Z_{S}\left(S_{k}\right)^{\oplus \text { ? }}$ $\Rightarrow|S|=\left|Z_{S}\left(s_{k}\right)\right|^{?} \Leftrightarrow \alpha_{i} \mid n \forall i$. Since $s_{k} \notin Z(G) \Rightarrow \alpha_{k}<n$.
(4) becomes:
(5) $q^{n}-1=q-1+\sum_{i=1}^{k}\left(q^{n}-1\right) /\left(q^{\alpha_{i}}-1\right)$

Let $P_{\alpha}(x) \in \mathbb{Z}[x]$ denote the α th cyclotomic polynomial, $P_{d}(x)=\prod_{\varepsilon}(x-\varepsilon)$, where the product is taken over primitive duh roots of 1 . In particular, $x^{n}-1=\prod_{\alpha / n} \Phi_{\alpha}(x) \& \Phi_{\alpha}, \Phi_{\alpha^{\prime}}$ are coprime for $\alpha \neq \alpha^{\prime}$. In particular, $\exists h(x), h_{i}(x) \in \mathbb{Z}[x]$,

$$
i=1, \ldots k \text { s.t. } x^{n}-1=P_{n}(x) h(x)=P_{n}(x)\left(x^{\alpha_{i}}-1\right) h_{i}(x)
$$

Combining this with (s), we get

$$
\Phi_{n}(q) h(q)=(q-1)+\sum_{i=1}^{k} \Phi_{n}(q) h_{i}(q) \Rightarrow P_{n}(q) \mid(q-1)
$$

Observing $\left|\Phi_{n}(q)\right|>|q-1|$ (exeruse) we arrive at a contradiction w. $n>1$
3) Bonus: Breuer group.

It turns out that the set of 150 orphism classes of finite dimensional skew-fields over IF carries a group structure, the resulting group is called the Bracer group of $\mathbb{F} \&$ is denoted by $\operatorname{Br}(\mathbb{F})$.

The construction of the group structure is based on the following observation

Theorem: Let A, B be finite dimensional central simple \mathbb{F}-algebras. Then

1) $A \otimes B$ is a central simple algebra
2) $A \otimes A^{\text {opp }} \xrightarrow{\sim} E n \alpha_{I F}(A)$.

Sketch of proof:
Step 1: Note that A is an irreducible $A \otimes A^{\text {opp -module }}$ via $a_{1} \otimes a_{2}, a=a_{1} a a_{2}\left(a_{1}, a_{1}, a_{2} \in A\right)$, which, in particular gives a homomorphism of algebras $A \otimes A^{\text {spp }} \rightarrow$ En $\alpha_{F}(A)$. Note that End $\underset{A \otimes A_{D P P}}{ }(A) \xrightarrow{\sim} Z(A)=[A$ is central $]=\mathbb{F}$.

Step 2: We use Proposition in Sec 1 of Lee 22: every $A \otimes A^{o p p}$-submodule in $A \otimes B$ is of the form $A \otimes B^{\prime}$, where $B^{\prime} \subset B$ is an \sqrt{F}-subspace. Similarly, every $B \otimes B^{o p p}$. submodule is of the form $A^{\prime} \otimes B$ for an \mathbb{F}-subspace $A^{\prime} \subset A$ It fellows that there are just two subspaces in $A \otimes B$ that are both $A \otimes A^{o p p}-\& B \otimes B^{o p p}-$ submodules: $\{0\} \& A \otimes B$. Such a subspace is exactly the same thing as a twosided ideal (exercise). So $A \otimes B$ is simple. To show it's central is also an exercise.
3) Since $A \otimes A^{o p p}$ is simple, the homomorphism

$$
A \otimes A^{o p p} \rightarrow E \operatorname{En} \alpha_{\mathbb{F}}(A)
$$

is injective. Both dimensions are $(\operatorname{dim} A)^{2}$, so the homomorphism is an isomorphism.

For a central skew-field S, let [S] denote it's isomorphism class. Fix two such skew-fields S_{1}, S_{2}. By the previous thorem $S_{1} \otimes S_{2}$ is a central simple algebra, and by our
classification of simple algebras, $S_{1} \otimes S_{2} \simeq \operatorname{Mat}_{n}\left(S_{3}\right)$ for a uniquely determined skew-field S_{3} that must be central. We define $\left[S_{1}\right]\left[S_{2}\right]:=\left[S_{3}\right]$. An easy check using the associativity of tensor products of algebras \& Exercise in Sec 2.1 of Lee 24, shows that this product is associative. It's also commutative \& $[\mathbb{F}]$ is the unit. By 2) of the previous theorem $\left[S^{\text {opp }}\right]$ is the inverse of $[S]$. So we indeed get an abelian group.

An important property of $\operatorname{Br}(\sqrt{F})$ is that every element has finite order. More precisely, Thm in Sec 1.0 (and it's Char p versions) imply that $\operatorname{dim}_{\mathbb{F}} S$ is a complete suave. Define the index of S, in $\alpha(S)$, to be $\left(\operatorname{dim}_{\mathbb{F}^{-}} S\right)^{1 / 2}$ One can show that $[S]^{\text {ind }(S)}=[\mathbb{F}]$.

