Lecture 5: Irreducible & completely reducible

1) Irreducible representations.

We proceed to studying certain classes of representations: "irreducible" & "completely reducible" ones.

Our general setting is that \mathbb{F} is a field & A is an associative (unital) \mathbb{F}-algebra. As in Sec 2 of Lec 1, we say that a representation V of A is irreducible if it's $\neq \{0\}$ and contains no proper subrepresentations i.e subrepresentations U different from $\{0, V\}$.

Example: Let $A = End(V)$ so that V is a representation of A - Example 1 in Sec 2.3 of Lec 3. It's irreducible. Indeed, let $\{0\} \neq U \subset V$ be a subrepresentation. Pick $0 \neq u \in U$. Then \forall
$v \in U \Rightarrow \exists \varphi \in \text{End}(V) | \varphi u = v \Rightarrow v \in U \Rightarrow U = V.$

11) Example: 1-dimensional representations of groups.

Any 1-dimensional representation V is irreducible - there are no proper subspaces. Here we will study 1-dimensional representations of G so that $A = GF$.

A choice of basis (= a nonzero element in V) identifies $GL(V)$ with $GL(F) = GF \setminus \{0\}$ (w.r.t. multiplication). This identification is independent of the choice - the group $GF \setminus \{0\}$ is abelian, so the conjugation is the identity automorphism of $GF \setminus \{0\}$. Hence a 1-dimensional representation of G is a group homomorphism $G \to GF \setminus \{0\}$.

Recall that for $g, h \in G$, we can define their commutator $(g, h) := g h g^{-1} h^{-1}$. The subgroup generated by these elements is normal, it's called the derived subgroup of G and is denoted by (G, G).

Since $GF \setminus \{0\}$ is abelian, $\varphi((g, h)) = 1$ and hence φ factors through the quotient $G/(G, G)$, an abelian group. We arrive at a bijection between the 1-dimensional representations of G & of $G/(G, G)$ (any representation of $G/(G, G)$ can be viewed as that
of G via the pullback w.r.t. $G \rightarrow C/(G,G)$, Sec 2.4 of Sec 2.
Below we assume G is abelian and finite.

Recall that $G \cong \prod_{i=1}^{k} (\mathbb{Z}/m_i \mathbb{Z})$ for some $k \geq 0$, $m_1, \ldots, m_k > 1$. We note that for any abelian groups G_1, \ldots, G_k, H we have a bijection

\[\text{Hom}_{\mathbb{Z}/r} \left(\prod_{i=1}^{k} G_i, H \right) \cong \prod_{i=1}^{k} \text{Hom}_{\mathbb{Z}/r} (G_i, H), \]

where $\text{Hom}_{\mathbb{Z}/r}$ denotes the set of groups homomorphisms, and the map sends ϕ to $(\phi|_{G_1}, \phi|_{G_2}, \ldots, \phi|_{G_k})$ (exercise). This reduces the question of describing the 1-dimensional representations of finite (abelian) groups to that for cyclic, which is handled (in the case when \mathbb{F} is algebraically closed) by Prob 1 of HW 1: a homomorphism $\mathbb{Z}/m \mathbb{Z} \rightarrow \mathbb{F}^* \{0\}$ is unique recovered from the image of a generator, which can be any mth root of 1 so that we get m pairwise non-isomorphic representations (you still need to work out the details).

1.2) Some irreducible representations of symmetric groups

Let $G = S_n$ (and $A = \mathbb{F} S_n$). We are going to construct some irreducible representations of G. Let’s start w. 1-dimensional.
Example: Define the sign representation of S_n as the homomorphism $S_n \rightarrow \mathbb{F}\{0,1\}$ given by $g \mapsto \text{sgn}(g)$.

Exercise: The 1-dimensional representation of S_n is isomorphic to the trivial or sign (hint: either prove that (S_n, S_n) is the subgroup of even permutations or observe that all transpositions (ij) go to the same element of $\mathbb{F}\{0,1\}$ and use $(ij)^2 = e$ to show this element $= \pm 1$. Moreover, if char $\mathbb{F} \neq 2$, then trivial and sign representations are not isomorphic.

Now we proceed to irreducible representations of higher dimensions. Recall the permutation representation: $V = \mathbb{F}^n$ w. S_n acting by permuting the coordinates: $g \cdot (a_1, \ldots, a_n) = (a_{g^{-1}(1)}, \ldots, a_{g^{-1}(n)})$ (Example 1 in Sec 1 of Lec 1). As any Fun representation, it has two subrepresentations, to be denoted here by $F_{\text{const}} = \{ (a, \ldots, a) \}$ (trivial as a representation) and $F_0 = \{ (a_1, \ldots, a_n) \mid \sum_{i=1}^n a_i = 0 \}$. The following lemma establishes some properties of these representations.
Lemma: 1) We have $\mathbb{F}_c^n \cong \mathbb{F}_c^n$ iff char \mathbb{F} divides n.

2) Otherwise, $\mathbb{F}_c^n \oplus \mathbb{F}_c^n = \mathbb{F}_c^n$.

3) and \mathbb{F}_c^n is irreducible.

4) $\text{sgn}_n \otimes \mathbb{F}_c^n$ is irreducible iff \mathbb{F}_c^n is.

5) $\text{sgn}_n \otimes \mathbb{F}_c^n$ is not isomorphic to \mathbb{F}_c^n for $n \neq 3$.

Proof: 1) & 2) are left as exercises.

3) Set $e_i = (0, 0, 1, -1, 0, \ldots, 0)$, $i = 1, \ldots, n-1$. These vectors form a basis in \mathbb{F}_c^n. If a subrepresentation U contains one of them, it contains all: $6e_i = e_j$ for $6 \in S_n$ with $6(i) = 6(j), 6(i+1) = 6(j+1)$.

$\text{char } \mathbb{F}$ doesn't divide $n \Rightarrow \forall \; \mathbf{v} = (x_1, \ldots, x_n) \in \mathbb{F}_c^n \setminus \{0\} \exists \; i \mid x_i \neq x_{i+1}$. Then $\mathbf{v} - (i, i+1). \mathbf{v} = (x_i - x_{i+1}) e_i$, so $\mathbf{v} \in U \Rightarrow e_i \in U \Rightarrow U = \mathbb{F}_c^n$.

4) We prove a more general claim: if W & V are representations of G & $\dim W = 1$, then V is irreducible iff $W \otimes V$ is. Let $\rho_W : G \to GL(W)$, $\rho_V : G \to GL(V)$ be the corresponding homomorphisms. We can identify W w. \mathbb{F} and hence $W \otimes V = \mathbb{F} \otimes V$.

5
V as vector spaces (Sec 1.4 of Lec 9). Under this identification, $p_{w \circ v}(g) = p_w(g)p_v(g)$.

So a subspace in $W \otimes V$ is a subrepresentation (\Leftrightarrow stable under all $p_{w \circ v}(g)$) iff the same subspace in V is stable under all $p_v(g)$ - any subspace is stable under scalar operators.

5) Exercise. Hint: $(1,2)$ has eigenvalues -1 w. multiplicity 1 and 1 w. multiplicity $n-2$ on \mathbb{F}_n^* and vice versa on $sgn^* \otimes \mathbb{F}_n^*$. □

2) Completely reducible representations & Maschke’s Thm.

Definition: Let A be an associative algebra over \mathbb{F}. An A-module V is called completely reducible if it submodule $U \subseteq V \exists$ a complement: submodule $U' \subseteq V$ w. $U \oplus U' = V$ (the direct sum of subspaces).

Note that then $V \cong U \oplus U'$ as A-modules. Note also that every irreducible representation V is completely reducible - just two options for $U \subseteq V$: $\{0\}$ and V. 6
The same definition applies to representations of a group G because a representation of G is the same thing as a representation of the group algebra FG.

The following result is very important and gives motivation to consider completely reducible representations.

Thm (Maschke): Let $|G| < \infty$. Further, assume that either $\text{char } F = 0$ or $\text{char } F > 0$ but $\text{char } F \nmid |G|$. Then every (finite dimensional) representation of G over IF is completely reducible.

We'll prove this theorem in the next lecture. We'll also see that this statement implies one from Sec 2 of Lec 1.

Remark: Let's see how the conclusion of the theorem fails if one of the conditions doesn't hold:

1) Suppose $p = \text{char } IF$ divides n, let $G = S_n$ & $V = IF^n$, $U = IF^n$. A complement U' must have dim $= 1$. So $U' = IF \oplus$ with
\[u = (a_1, \ldots, a_n). \] Assume \(n > 2 \) (the case \(n = 2 \) is left as an exercise).

\(g \in S_n \) w. \(g^2 = 1 \) (i.e. \(g = (i, j) \)) we have \(g v = \pm v \). One can check that this implies \(a_1 = \ldots = a_n \). A contradiction: \(v \in F^n / b/c \ p \mid n \).

2) Consider the group \(\mathbb{G}^{2*} = \{ (a, b) \mid a, b \in F \} \subset GL(F) \), infinite if \(F \) is, and its representation in \(F^2 \) given by the inclusion into \(GL(F) \). From \((a, b)(0, 1) = (a + b, b)\), one sees that \(U = \{(a) \mid a \in F\} \) is the only proper subrepresentation. So \(F^2 \) is not completely reducible.

2.1) General properties of completely reducible representations.

One can ask whether the complete reducibility is preserved under the natural operations w. modules. The answer is Yes.

Lemma: Let \(V_1, V_2 \) be completely reducible \(A \)-modules. Then

(i) Every submodule \(U_1 \subseteq V_1 \) is completely reducible.

(ii) \(V_1 \oplus V_2 \) is completely reducible.

We'll prove this next time.
Corollary: Let V be a finite dimensional A-module. TFAE:

(a) V is completely reducible.

(b) V is isomorphic to the direct sum of irreducible modules.

Proof: (a) \Rightarrow (b) is exercise - use induction on $\dim V$ & i) of Lemma.

(b) \Rightarrow (a) follows from ii) of Lemma by induction on the number of summands. □

The corollary allows to reduce the study of completely reducible modules to the study of irreducible ones.