
 Lecture6 IrreducibleAcompletely reducible

representations pt 2
1 Proof of Maschke's theorem

2 Decomposition into irreducibles Schur lemme

Ref Secs 11.1241.2 in V3 Secs2.34.1.4.6 in E
1 e Recap

Ourgoal in this section is to prove

Thm Meschke Let Ilka Further assume that either

char f e or charE e but char5X1h1 Thenevery finitedimensionalrepresentation V of G ever F is completely reducible

Wealso need to prove a lemmafrom the last time
Lemme Let U V becompletely reducible Amodules Then

i Every submodule UCV is completely reducible

in Yok is completely reducible

Proof i Let U all be a submodule Since V is comple
A



tely reducible I submodule U'cV W V Ue U Clearly

UnU'nuns a toshowUpUtdnutnotethat tug U Duell
a EU st Uputu from V Utu Then u'sa well nu i.e

U 4 14nu U Uatunu

ii Let UcVava be a submodule We'll find submedules

UicVi S t U APU hey
Consider the projection Vava V too also andlet

st be its restriction to U In particular H U K is an
Amodule homomorphism So Ker f UM CU imsick
are submodules Since UV are completely reducible we can

find submodules U V sit U un V RUCk St

Uzeim Vz We claim that Ue Uteth Vok
Let nieAi is9,2 best a the U Note that asIcarus

E im I ye im atAU2 o Then u eV14 AU e We

see that UA U Uz he
Now we prove Ut Uell Vok Pick VieVi We can

find U'cU YEA I VETcu tha Then Voth U lezEV and
we can find a EVMURUell Viva y u tu

I



V ve Cutu'll ugh the desired decomposition I

Note that thx to corollary in Sec 2.1 ofLee 5 which

followedfrom the lemme we'vejustproved everycompletely
reducible representation is isomorphic to thedirect sum of
irreducible representations The theorem therefore reduces thestudy

of completely reducible representations to that of irreducibles

91 Averaging

We will give onepreet of Maschke's thm basedon invariant

projectors and sketch an alternativepreet for F I based

on invariant Hermitian scalarproducts Both are based onthe

same key idea averaging to be explained in thissection

Under the assumption of thetheorem the following element

of IG makes sense E Fagag It's called the
averaging or trivial idempotent Here are its basicproperties

Lemma a he e the G
I



6 Let U be a representation of G For any vet the
element E v e v invariants

4 if rev then e v v

Proof a followsby reorderingthe summands 6 follows

from a 4 is clear Details are exercise s

Rem Ee which is why e is called an idempotent

1 2 Preet vie invariant projectors

Weneed an equivalent formulation of the existence of
a Gstable complement Forthis weneedprojectors

Definition Let Ube a vectorspace over F Ucr

be a subspace By a projector to U we mean an opera

ter PEEnd v s t
i im P C U

ii P u u t UeU
H



Note that imP UK P P

Lemma There is a bijection between

at theprojectors to U

6 the complements to U i.e subspaces U'cVW HOU V
Proof

b a Set Pu la tu a a e U u ell Pu satisfies i ii

a 16 Set Up Ker P Note that Plo Par Par
P r so So UtU'p V Since Pluto Are U PG so

f v e Up weget UAU'p lo so U Up V

The claim that U e Pa P H Up are inverse to

each other is left as an exercise A

Proof of Theorem Notethat if V is a representation ofG
U CV a subrepresentation and a projector P to U is a home

morphism of representations then U'sKer P is also a sub

representation lemma I in Sect ofLec 3 andso ly the

previous
lemma U is a complement to U

5



By a of Lemme in Sec2.2 of Lee 4 yeEndV is a
homomorphism ofrepresentations iff it's invariant for the

representationofG in EndV givenby g q greygi
Pick a projector P to U at least one exists Consider

B e.PE gag P
an invariant It remains to check that B is a projector to
U

Check i Itv tagaguPogil v Ii for P

gulli cu ell
Check ii well Blu TaEe gu Pgi u EgilcuteU

K in for P Fagagrogi la G u u I

13 Sketch ofproof via invariant Hermitianproduct
Let F D and Vbe a finitedimensional representation

of G over Cl Recall that by a Hermitian form on V we

mean an R bilinearmap C UV A satisfying the

following
additional conditions



It's A linear in the 1st argument

and u u Fu V u u EV
We say that C is a Hermitian scalarproduct if in

addition uu e f v er e Such a exists

For a subspace UCV and a Hermitian scalarproduct
4 we can consider the orthogonal complement U so

that UeU's V
Let Herm V denote the set of Hermitian forms it's a

vector space over R addition andmultiplicin by scalars of
functions

A proof of Theorem is based on thefollowingexercises

Exercise 1 a Herm V is a representation of G over R

via g definedby luv to g ug us
6 If U CV is a subrepresentation andC eHermN

is G invariant then U is a subrepresentation



Exercise 2 If 4 is a Hermitianscalarproduct then

so is E Egg

Thx to Exercise 2 there is a Gina Hermitian scalar

product Now we use 6 of Exercise 1and take U's U

14 Remarks

1 The 2ndproof we sketched is more narrow in scope
The approach howeverhas an advantage once an invariant

Hermitianscalarproduct is fixed we have apreferredway
of recovering U from U And in some settings we have

such a Here are two of them that are beyondthe scope
of this course

1 Let G be a possibly infinite group
Let X be a spacewith a measure and G act on

X bypreserving the measure Then L x comes w C it's

a Hilbert space and Gacts on L x by unitary operators
I



In particular L X is completely reducible in thissetting

one restricts to subrepresentations that closed wv t thetape

logygiven by the norm

II Representations in Hilbertspaces by unitary operators

are also important for QuantumMechanics Hilbert spaces

appear as spaces ofstates forquantum mechanicalsystems
andgroup representations by unitary operators appear as symmetries

2 The constructions and results of this section extendto

some infinitegroups if one suitably restricts the class of
representations considered Mostnotably this is the case for
continuous representations of compactgroups thesummation in
the construction of the averaging operatorneeds to be replaced
with an integral We elaborate on this in the bonussection

3 Averaging is useful for otherpurposes as well eg to

prove that thealgebras of invariants are finitelygenerated
his is the subject of Bonus lecture 6.5



2 Decomposition into irreducibles Schur lemme

Let A be an associative algebra and V is its finite
dimensionalrepresentation Assume V is completely reducible ByCor

in Sec 2.1 ofLee5 V is isomorphic to IfUtmiwhere U
Uk are pairwise non isomorphic irreducible representations ofA

Our question for now is how to compute the numbers Mi

Proposition Mi dimHom hit dimEnda Ui

The rhs is called themultiplicity of Ui in V Note
that it depends only onUi V not on the choice ofdecompin
Theproof of theproposition is based on thefollowing

fundamentally important result

Theorem SchurLemma Let A be an associative algebra over
F and UVbe irreducible A modules Then

a any A module homomorphism q U V is either e

g
invertible



6 Suppose F is algebraically closedanddim Vcs

Any homomorphism q U V is proportional to Idu

Proof a Recall Lemma I in Sect of Lec3 that

Ker yell im g e V are submodules If y to then Ker444
imy p to But UV are irreducible so Kerg lo imy V
Hence y is bijective i.e invertible

6 Under our assumptions y hes an eigenvalue say a Note
that y aIdu is also a homomorphism 4 ofLem2 in Sect
Lee 3 Since y aIdu is not invertible by a it's zero s

Rem This claim is a lemma ble theproof iseasy
But it's still a very importantbasic theorem we'll see

severalmore applications later

We'llprove Preposition in thenext lecture

A



3 Bonus averaging for infinitegroups
For some infinite groups one can writedown analogs of

the operator u r er for syme representations As for the

representationsof finite groups this will show that the

representationsin this class are completely reducible

The first example occurs in the world oftopologicalgroups
and their finite dimensional continuous representations V10

cheesing a basis in V we identify GLA w Gln e so that

p G Ch e is specifiedby n functions matrix coefficients

We say that V is continuous if thesefunctions are
Weneed our group to be compact as a topological

space A basic example is Unthe subgroup ofunitarymatrices

in Ln e It's compact bc it's closed givenby a bunch of

equations abounded all columns have length 1 in Matn a

Thegroup of real orthogonalmatrices OnD2 is compacttoe
A basicfact about a compactgroup G is that theyhave

a distinguished measureja calledHaarmeasure that is

invariant under left andright translations andjust 1
I



In the easyspecial case
when thegroup G is finite we

take the measure w value it at everypoint For compact
Lie groups such as U n er O'In R it comes from a

suitably normalized left invariant top differentialform
We can integrate continuous functions on G w rt

the measure ja This
extends to V valuedfunctionsforany

finite dimensional vector space Now if V is a continuous

representation the map g agr G V is continuousfor

any vet so can be integrated Wedefine q V V by

err fgudy
Since y is left invariant we have Eve V andsince

Idye1 we have Ever t ve v
Theexistence of averaging operators for compactgroups

yields the existence of averaging operators for rational

representations of complex reductivegroups An example is

Gln e and a representation is rational if its matrix
coefficients are polynomials in the n entries Let All

ye
presentations obtained from the tautological represen

3



tation G corresponding to the identity homomorphism

Gln e Ln e by means oftaking direct sums
summands tensorproducts and duels are rational

By definition the averaging operator for a rational

representationis the same as for Un Theonly thing we needto
check is that any Un invariant vector in a rational

representation of Gln e is Cla e invariant Forthis one

observes that the condition gov is equivalent to vanishing
of some matrix coefficients on g

Then one uses that Un is

Zariski dense in Gln E theonly function that ispoly
meal in thematrix entries and Let that vanishes on Un is 0

This is easy when n t any
Laurentpolynomial in Z vanishing

for left is o andrequires some theory for n 1 Passingfrom

Gln E to Un in this context is known as unitarytrick

I


