Lecture 9: Chavacters, pt. 2

1) Orthogonality of characters (w. addendum from 2/16)

Ref: Sec 11.4 in $[V], \operatorname{Sec} 4.5$ in [E].
1.1) Main result.

Let \mathbb{F} be an algebraically closed field, C be a finite group s.t. char $\mathbb{F} \times|\zeta|$ (so by Maschre's the, every representation of G is completely reducible). We consider the space of class functions

$$
C l(G)=\left\{f: G \rightarrow \mathbb{F} \mid f\left(g h g^{-1}\right)=f(h) \forall g, h \in G\right\}
$$

On this space we introduce a bilinear form $C(C) \times C(C) \rightarrow \mathbb{F}$.

$$
\left(f_{1}, f_{2}\right):=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) f_{2}\left(g^{-1}\right)
$$

It's symmetric: $\left(f_{2}, f_{1}\right)=\frac{1}{|G|} \sum_{g \in G} f_{2}(g) f_{1}\left(g^{-1}\right)=\left[\right.$ reorder $\left.g \leftrightarrow g^{-1}\right]$

$$
=\frac{1}{|G|} \sum_{g \in G} f_{2}\left(g^{-1}\right) f_{1}(g)=\left(f_{1}, f_{2}\right)
$$

To a finite dimensional representation V of G we assign its character $X_{V} \in C(G), X_{V}(g):=\operatorname{tr}\left(g_{V}\right), \operatorname{Sec} 2$ in Rec 8 .

The following is a very important basic result.

The: The characters of irreducible representations form an orthonormal (orthogonal w. squares $=1$) basis in $C l(\zeta)$.

We will prove this theorem in this lecture.

Exercise: Verify the conclusion of the theorem for $\zeta=S_{3}, S_{4}$ using the character tables in Sec 2.2
1.2) Strategy of proof.

The proof is in two big steps.

Claim 1: The characters of irreducibles span the vector space Cl(C).

Claim 2: The characters of irreducibles are an orthonormal collection: $\left(X_{u}, X_{v}\right)=1$ if $U \simeq V \& 0$ else.

Claim $2 \Rightarrow$ these characters are linearly independent hence form a basis the to Claim 1, thus proving the theorem.

Remark: We will only prove Claim 1 for char $\mathbb{F}=0$ in this lecture. The case of char $\mathbb{F}>0$ will be handled in the Ind part of the class.
1.3) Proof of Claim 1

Assumption: the span of characters is not the whole Cl(C).

Weill show that there's $z \in Z(\mathbb{F} G)$ (the center, Sec 1.1 in Lec 8) $Z \neq 0$, that acts by 0 on all irreducibles hence on all representations. Well apply this to the regular representation \& arrive at a contradiction.

To start with, \forall fin. dim. representation U of G equiv. $\mathbb{F} G)$ we can extend αX_{u} to $\mathbb{F} G: X_{u}(\alpha)=\operatorname{tr}\left(\alpha_{u}\right)$ for $\alpha \in \mathbb{F} G$.

Recall, Corollary in Sec 1.2 of Lee 8, that z acts by a scalar on any irreducible representation U.

Lemma: This scalar is $X_{U}(z) / \operatorname{dim} U$.

Proof:
We get $z_{u}=a \cdot I \alpha_{u}$ for some $a \in \mathbb{F} \Rightarrow \operatorname{tr}\left(z_{u}\right)=a \operatorname{tr}\left(I \alpha_{u}\right)=$ $Q \cdot \operatorname{dim} U \Rightarrow Q=X_{U}(z) / \operatorname{dim} U$.

Remark: We use char $\mathbb{F}=0$ when we divide by $\operatorname{dim} U$: we need to make sure that $\operatorname{dim} U \neq 0$ in \mathbb{F}.

Proof of Claim 1:
Step 1: $\operatorname{dim} Z(\mathbb{F} G)=\operatorname{dim} C l(G)=\#$ of conjugacy classes in G. Indeed, by Example in Sec 1.2 of Lee $8, Z(\mathbb{F C})=\left\{\sum_{h \in C} a_{h} h \mid a_{h}=a_{g h g^{-1}}\right.$ $\nVdash g, h\} \leadsto \operatorname{dim} Z(\mathbb{F} G)=\#$ conj. classes. Similarly, $\operatorname{dim} C l(\zeta)$ equals the same.

Step 2 (Assumption $\Rightarrow \exists z \in Z(\mathbb{F} G) \backslash\{0\}, w, z_{u}=0 \quad \forall$ irreducible U).

Consider the linear equations $X_{a}(t)=0$, where U runs over the (isomorphism classes of) irreducibles. By Assumption, this system of linear equations is equivalent to one $w .<\operatorname{dim} C l(G)$ $=[$ Step 1$]=\operatorname{dim} Z(\mathbb{F} C)$ equations. So $\exists z \in Z(\mathbb{F} C) \mid\{0\} w$.
$X_{U}(z)=0 \quad \forall$ irreducible U. Then $z_{U}=0$ by Lemma.

Step $3\left(z_{V}=0 \forall\right.$ representation V): By Maschke's Thy (Lee 6) V is completely reducible, so (Corollary in Sec 2.1 of Lec 5) $V \simeq \oplus_{i=1}^{k} u_{i}^{\oplus m_{i}}$, where $u_{1}, \ldots u_{k}$ are irreducible. By Step $2, z_{u_{i}}=0$, hence $z_{V}=\operatorname{diog}(\overbrace{u_{1}, \ldots}^{m_{u_{1}}}, \ldots, z_{u_{k}})=0$.

Step $4\left(\operatorname{set} V_{:}=\sqrt{F} C\right.$ \& get contradiction): $0=z_{\mathbb{F}, \cdot} .1=z$. Contradiction w. $z \neq 0$
1.4) Strategy of proof of Claim 2

Let's explain how we prove that the characters of irreducibles form an orthonormal collection. This is based on

Theorem: Under the assumptions of Sec 1.1, we have $\operatorname{dim}_{\operatorname{Hom}_{C}}(U, V)=\left(X_{V}, X_{U}\right)$

Schur's lemme implies that, for irreducible U,V, the l.h.s is 0 if U, V are not isomorphic, and 1 if they are proving Claim 2.

Our proof of the previous theorem is based on two auxiliary results of independent interest.

Recall, Sec 2.2 of Lech, that if U, V are representations of G, then How (U, V) becomes a representation:

$$
g \cdot \varphi:=g_{v} \circ \varphi \cdot g_{u}^{-1}, g \in G, \varphi \in \operatorname{Hom}(U, V)
$$

Proposition 1: $X_{\text {How }(u, v)}(g)=X_{V}(g) X_{u}\left(g^{-1}\right)$

The Ind result concerns the following: for a finite dimensional representation W relate dim W^{G} (the subspace of invariants) to X_{W} :

Proposition 2: $\operatorname{dim} W^{G}=\frac{1}{|G|} \sum_{g \in G} X_{W}(g)$ (in $\left.\mathbb{F}\right)$.

Proof of Theorem modulo Propositions $1 \& 2$:
Recall (Sec 2.2 of Lee 4) that $\operatorname{Hom}_{c}(U, V)=\operatorname{Hom}(U, V)^{\text {C }}$ So $\operatorname{dim} \operatorname{Hom}_{G}(U, V)=\operatorname{dim} \operatorname{Hom}(U, U)^{G}=[P v o p 2]=\frac{1}{|G|} \sum_{g \in G} X_{H_{\text {om }}(u, v)}(g)$ $=[$ Prop. 1] $]=\frac{1}{|G|} \sum_{g \in G} X_{V}(g) X_{u}\left(g^{-1}\right)=\left(X_{V}, X_{u}\right)$.

So it remains to prove Propositions $1 \& 2$.
1.5) Proof of Proposition 1

Pick $g \in G$ and let H be the (cyclic) subgroup of G generated by g. Since $|H|$ divides $|G|$, the representations of H over \mathbb{F} : are still completely reducible. By Prob. 1 in HW1 (or $\operatorname{Sec} 1.3$ in Sec 7), the irreducible representations of H are 1dimensional $\Rightarrow U_{1} V$ ave direct sums of 1-dimensional representations of H, and hence g_{u}, g_{v} are diagonalizable: let $u_{1} . . u_{m} \in U$, $v_{1}, \ldots v_{n} \in V$ be eigenbases. Let diag $\left(a_{1}, a_{m}\right), \operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$ be the matrices of g_{v}, g_{u} in these bases. In particular, $X_{v}(g)=\sum_{i=1}^{m} a_{i}$, $X_{u}\left(g^{-1}\right)=\sum_{j=1}^{n} b_{j}^{-1}$

For the matrix unit $E_{i j} \in \operatorname{Hom}(U, V)(i=1, \ldots, m, j=1, \ldots, n)$ we get

$$
\begin{gathered}
g \cdot E_{i j}=g_{v} \circ E_{i j} \circ g_{u}^{-1}=a_{i} b_{j}^{-1} E_{i j} \\
X_{H \circ m(u, v)}(g)=\operatorname{tr}\left(g_{H_{1 o m}(u, v)}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j}^{-1}=\left(\sum_{i=1}^{m} a_{i}\right)\left(\sum_{j=1}^{n} b_{j}^{-1}\right)=X_{v}(g) X_{u}\left(g^{-1}\right) .
\end{gathered}
$$

This finishes the proof.

Remarks: 1) In particular, $X_{U^{*}}(g)=[V$ is trivial $]=X_{u}\left(g^{-1}\right)$. Also, recall that by $\operatorname{Sec} 2.2$ of Lec 4, we have an 150 morphism of representations $\operatorname{Hom}(U, V) \simeq U^{*} \otimes V \Rightarrow \operatorname{Hom}\left(U^{*}, V\right) \xrightarrow{U^{* *}} \boldsymbol{\sim} U$
So $X_{u \otimes V}(g)=X_{V}(g) X_{U^{*}}\left(g^{-1}\right)=X_{V}(g) X_{u}(g)$: the character of tensor product is the product of characters.
2) The formulas $X_{u^{*}}(g)=X_{U}\left(g^{-1}\right) \& X_{u \otimes V}(g)=X_{U}(g) X_{V}(g)$ hold wo the assumption that char $\mathbb{F} X|G|$. The proof is harder: one needs to deal w. generalized eigenspaces.
1.6) Proof of Proposition 2

Recall the averaging idempotent $\varepsilon=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{F C}(\operatorname{Sec} 1.1$ of $L e c 6)$. The operator $\varepsilon_{W}: W \rightarrow W$ satisfies:

- in $\varepsilon_{w} \subset W^{G}$

$$
\left.\cdot \varepsilon_{w}\right|_{W^{G}}=I d
$$

see Lemme in Sec 1.1 of Lee 6. In other words, ε_{w} is a projector to W^{G} (see Sec 1.2 of Lee 6).

What we need to prove is that

$$
\operatorname{dim} W^{G}=\frac{1}{|G|} \sum_{g \in C} \operatorname{tr}\left(g_{w}\right)=\operatorname{tr}\left(\frac{1}{|G|} \sum g_{w}\right)=\operatorname{tr}\left(\varepsilon_{w}\right)
$$

Since ε_{W} is a projector to W^{G}, we reduce Proposition 2 to:

Lemma: Let W be a finite dimensional vector space, and $W_{0} \subset W$ be a subspace. Let P be a projector to W_{0}. Then $\operatorname{dim} W_{0}=\operatorname{tr} P$.

Proof: Recall, Sec 1.2 of Lec 6, that $W=W_{0} \oplus \operatorname{ker} P$. Beth $W_{0} \& \operatorname{ker} P$ are P-stable, so $\operatorname{tr} P=\left.\operatorname{tr} P\right|_{W_{0}}+\left.\operatorname{tr} P\right|_{\text {jer } P}$ $=\operatorname{tr} I \alpha_{W_{0}}+\operatorname{tr} 0=\operatorname{dim} W_{0}$

Addendum: alternative proof of Proposition 1
Proposition 1!: Let U, V be finite dimensional representations of G over any field \mathbb{F}. Then
(1) $\quad X_{u \otimes v}(g)=X_{u}(g) X_{v}(g)$
(2) $\quad X_{u^{*}}(g)=X_{u}\left(g^{-1}\right)$
(3) $\quad X_{\text {How }(u, v)}(g)=X_{V}(g) X_{U}\left(g^{-1}\right)$.

Proof: (1) Pick bases $u_{1}, \ldots u_{m} \in U, v_{1}, \ldots, v_{n} \in V$. Then the vectors $u_{i} \otimes v_{j}$ form a basis in $U \otimes V$. $F i x ~ g \in C$. Let $A=\left(a_{i i^{\prime}}\right) \in \operatorname{Mat}_{m}(\mathbb{F})$, $B=\left(b_{j j^{\prime}}\right) \in \operatorname{Mat}_{n}(\mathbb{F})$ be the matrices of g_{u}, g_{v}. Recall that $g_{u \otimes v}(u \otimes v)=\left(g_{u} u\right) \otimes\left(g_{v} v\right)$. It follows that the coefficient of $u_{i} \otimes v_{j}$ in $g_{u \otimes v}\left(u_{i} \otimes v_{j}\right)$ is $a_{i i} 6_{j j}$ So
$X_{u \otimes v}(g)=\operatorname{tr}\left(g_{u \otimes v}\right)=$ [the sum of the mn diagonal entries]

$$
=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i i} b_{j j}=\left(\sum_{i=1}^{m} a_{i i}\right)\left(\sum_{j=1}^{n} b_{j j}\right)=X_{u}(g) X_{v}(g) .
$$

(2): Is similar in spirit. Let $\alpha_{1} \ldots \alpha_{m}$ be the dual (to $u_{1}, \ldots u_{m}$) basis of U^{*}. Then the matrix of $g_{u^{*}}$ in the basis $\alpha_{1}, \ldots, \alpha_{m}$ is $\left(A^{-1}\right)^{\top}$ (transpose comes from $g_{u^{*}} \alpha=\alpha \cdot g_{u}^{-1}$, composition on the right) And $X_{u *}(g)=\operatorname{tr}\left(\left(A^{-1}\right)^{\top}\right)=\operatorname{tr}\left(A^{-1}\right)=X_{u}\left(g^{-1}\right)$
(3): follows from (1) \& (2) \& isomorphism of representations

$$
\operatorname{Hom}(U, V) \xrightarrow{\sim} U^{*} \otimes V .
$$

