Lecture A1: Around reflection group, 1
a) What is this about?

1) Reflection groups
2) Regular polytopes.

Refs: [B], Chapters 485: for Sec 1.
[C] for $\operatorname{Sec} 2$
0) What is this about?

In this course, we have considered (and will consider) a bunch of finite groups: symmetric groups, (binary) dihedral groups, the binary tetrahedral groups with some more to follow.

These groups have some shaved significance: they have to do with reflection groups, root systems and such. This series of four lectures talks about these objects.

1) Reflection groups
2) Definition and examples

Let V be a finite dimensional vector space over \mathbb{R} equipped
w. a scalar product. So we can consider its orthogonal group, $O(v)$.

Definition:- By a reflection in $O(v)$ we mean the orthogonal reflection about a hyperplane, equivalently, an element $s \in Q(V)$ w. $\operatorname{rk}\left(s-i d_{v}\right)=1$ (so that $\operatorname{ker}(s$-id $)$ is that hyperplane).

- By a reflection group in $O(V)$ we mean a finite subgroup generated by reflections.

Examples: 1) The dihedral group of order $2 n$, ie. the group of isometries of the regular n-gon in a 2-dimensional space V. This is denoted by $I_{2}(n)$.
2) Consider the space $V=\mathbb{R}^{n} w$. the standard scalar product. The $G=S_{n}$ acting on \mathbb{R}^{n} vie its permutation representation is a reflection group: a transposition ($i j$) acts as the orthgonal reflection about the hyperplane $x_{i}=x_{j}$.

Note that the line $\{(x, \ldots, x)\} \subset \mathbb{R}^{n}$ is a subrepresentation \& $\mathbb{R}_{0}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i=1}^{n} x_{i}=0\right\}$ is its orthogonal complement. Note that 21
$S_{n} \hookrightarrow O\left(\mathbb{R}_{0}^{n}\right)$ and is also a reflection group there. Note that \mathbb{R}_{0}^{n} is an irreducible as a representation of S_{n}, it's called the reflection representation. The reflection group S_{n} acting on \mathbb{R}_{0}^{n} is often said to be of type $A_{n-1}\left(n-1=\operatorname{dim} \mathbb{R}_{0}^{n}\right)$.
3) Our vector space is still $V=\mathbb{R}^{n}$ and we consider the group of "signed permutations": transformations that send $\left(x, \ldots x_{n}\right)$ to $\left(\pm x_{1}, \pm x_{2}, \ldots, \pm x_{n}\right)$ for an arbitrary choice of signs. This group is isomer. phic to $S_{n} \times(\mathbb{Z} / 2 \pi)^{n}$. It is generated by reflections: about the hyperplanes $x_{i}= \pm x_{j} \& \quad x_{i}=0$. It's said to be of type B_{n} (or $B C_{n}$, the reason for the notation will be explained in the next part.
4) We can consider the subgroup of all elements in the group of type B_{n} that only change even number of signs. It's generated by the reflections about the hyperplanes of the form $x_{i}= \pm x_{j}$. It is said to be of type D_{n}.
1.2) Classification

A basic question is how to classify reflection groups $G \subset O(v)$ up to equivalence: two pairs $C_{1} \subset O\left(V_{1}\right), G_{2} \subset O\left(V_{2}\right)$ are equivalent if \exists a linear isometry $\varphi: V_{1} \rightarrow V_{2}$ s.t. $G_{2}=\varphi G_{1} \varphi^{-1}$). One can reduce to the case when V is irreducible over G : if $V=V, \oplus V_{2}$, the direct sum of spaces w. Euclidian scalar product s.t. both $V_{1} \& V_{2}$ are G-stable, then there are reflection groups $G_{i} \subset O\left(V_{i}\right), i=1,2$, s.t. $G=G_{1} \oplus C_{2}$ meaning that G consists of transformations $\operatorname{diag}\left(g_{1}, g_{2}\right) \in E n \alpha(V), g_{i} \in C_{i}$.

If V is irreducible over G, then we say that G is an irreducible reflection group.

The crucial step in the classification is the notion of a chamber. By a reflection hyperplane for G we mean a hyperplane $H \subset V$ s.t. the reflection about H is in G. A chamber in V is the closure of a connected component of $V \mid \cup H$, where the union is taken over all reflection hyperplanes. Here ave examples of chambers.

Examples:
(I) Type A_{n-1} : the chambers are labelled by permutations are look like $\left\{\left(x_{1}, \ldots x_{n}\right) \mid x_{\sigma(1)} \geqslant x_{\sigma(2)} \geqslant \ldots \geqslant x_{\sigma(n)}\right\}$ for $\sigma \in S_{n}$.
An example is $\left\{\left(x_{1}, \ldots x_{n}\right) \mid x_{1} \geqslant x_{2} \geqslant \ldots \geqslant x_{n}\right\}$.
(II) Type B_{n} : the chambers ave labelled by signed permtations and look like $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \xi x_{\sigma(1)} \geqslant \varepsilon_{2} x_{\sigma^{\prime}(2)} \geqslant \ldots \geqslant \varepsilon_{n} x_{\sigma^{\prime}(n)} \geqslant 0\right\}$.
An example is: $\left\{\left(x_{1}, \ldots x_{n}\right) \mid x_{1} \geqslant x_{2} \geqslant \ldots \geqslant x_{n} \geqslant 0\right\}$

Here are general facts about chambers:
Fact 1: G permutes the chambers simply transitively.
Fact 2: Let C be a chamber. Then every orbit of G intersects C at a single point.

In the examples above, these properties ave immediate to check.

Exercise: Describe the chambers for the reflection groups of type D_{n} and check Facts $1 \& 2$.

By a wall of a chamber C we mean a reflection hyperplane H s.t. $\operatorname{dim}(C \cap H)=\operatorname{dim} V-1$.

Examples: In Example I, the walls of the chamber $C=\left\{\left(x_{1}, \ldots x_{n}\right) \sum_{i=1}^{n} x_{i}=0 \& x_{1} \geq \ldots \geqslant x_{n}\right\}$ are $x_{i}=x_{i+1}$ for $i=1, \ldots, n-1$.

In Example II, the walls of the chamber $C=$ $=\left\{\left(x_{1}, \ldots x_{n}\right) \mid x_{1} \geqslant x_{2} \geqslant \ldots \geq x_{n} \geqslant 0\right\}$ are $x_{i}=x_{i+1}, i=1, \ldots, n-1, \& x_{n}=0$.

Fact 3: If G is irreducible, then each chamber has exactly $\operatorname{dim} V$ walls.

Now from G we produce an unoriented multi-graph called the Coxeter diagram. Its vertices ave walls. We connect two vertices, H, H^{\prime} w an edge if the angle between $H \& H^{\prime}$ is $<\frac{\pi}{2}$. If the angle is $\frac{\pi}{k} w . k>3$, we put k as decoration on the edge. We note that the angle 6 is always $\frac{\pi}{K}$, where K is the order of $S_{H} S_{H^{\prime}}$, with $S_{H^{\prime}}, S_{H^{\prime}}$
being the reflections about $H \& H^{\prime}$.

Examples: I: where i corresponds to the wall $x_{i}=x_{i+1}$. II: i_{i} —n $_{3}-\cdots$ - $_{n-2}-_{n-1} \frac{4}{i}$
where i corresponds to the wall $x_{i}=x_{i+1}$ for $i<n$ \& to $x_{n}=0$ for $i=n$.

Exercise: The Coxeter diagram of type D_{n} is

Here's the main classification results.

The: 1) An irreducible reflection group is uniquely determined by its Coxeter diagram.
2) The following Coxeter diagrams can appear from irreducible reflection groups (the index is always the dimension of V):

- $A_{n}(n \geqslant 1), B_{n}(n \geqslant 2), D_{n}(n \geqslant 4)$, see above.
- The diagrams E_{6}, E_{7}, E_{8} :

- The diagram $F_{4}: . . .4 .-$.
- The diagrams H_{3}, H_{4}
\qquad
- The diagram $I_{2}(n)$ for $n \geqslant 5$ (corresponding to the dihedral $\operatorname{groups}\left(n=3\right.$ is $A_{2}, n=4$ is B_{2}; and $n=6$ case is known as C_{2}).

2) Regular poly topes

The regular polytopes is one source of how reflection groups arise (another source, root systems, will be considered in the next lecture).

We consider convex polytopes in a Euclidian space V, i.e. the convex hull of a finite subset of V. For a convex polytope we can consider its k-dimensional faces (that are assumed to be closed) as well as complete flags of faces: sequences 81

Example: For a triangle we have six complete flags that look like:
F_{1}. (we really need to take the closure of F_{2}, but this is hard to depict).

Definition: A polytope P is called regular if for any two complete flags of faces, there's an isometry of P mapping one flag to the other.

We can consider the group $I_{s o}(P)$ of P : its elements are the isometries of V fixing P. Now suppose that the center of P is $0 \in V$ (so that the isometry group $I_{\text {so }}(P) \subset O(V)$).

Thu: $I_{\text {so }}(P)$ is a reflection group.

Examples: 1) dim 2. The isometry group of a regular n-gan is $I_{2}(n)$.
2) $\operatorname{dim} 3$. There are five regular 3D poly topes: the tetra-
hedron, cube, octahedron, icosahedron \& dodecahedron. The cube \& octahedron shave the same isometry group (they are "dual" to each other: to get the regular octahedron from the cube, take the convex hull of the centers of dimension $\operatorname{dim} V-1(=2)$ faces; the same procedure produces the cube out of the regular octahedron). The same applies to isosahedron vs dodecahedron.

The reflection groups that appear ave A_{3} (for the tetrahedron), B_{3} (for the cubeloctahedron), H_{3} (for the icosahedron/dodecahedron).

Sketch of proof of Thu:
If $F, F_{\text {. }}^{\prime}$ are complete flags of faces, then $\exists!\theta \in$ $I_{\text {SO }}(P) w, \theta\left(F_{0}\right)=F_{0}^{\prime}$ Now suppose that $F_{0}=\left(F_{1} \subset F_{2} \subset \ldots \subset F_{l-1}\right)$, $F_{\cdot}^{\prime}=\left(F_{1}^{\prime} \subset F_{2}^{\prime} \subset \ldots F_{l-1}^{\prime}\right)$ satisfy $F_{j}^{\prime}=F_{j}$ for $j \neq i$ (w. some i). We claim that θ mapping F to F^{\prime} is a reflection (the corresponding reflection hyperplane is spanned as a subspace by the centers of the faces $F_{j}, j \neq i$). One can then show that we can get any flag of faces from F by changing one face at a time.

The clessification of regular polytopes in $\operatorname{dim}>3$ is as follows. There are three families that exist in all dimensions: the regular simplex (generalizing the regular tetrahedron; its isometry group has type A_{n}, where n is the dimension), the regular hypercube (generalizing the cube) and its dual (genevalizing the regular octahedron). The latter two ave dual to each other and their 150 metry groups are of type B_{n}. In addition, in $\operatorname{dim}=4$, there ave three exceptional polytopes. One is self-dual w. Isometry group of type F_{4}, the other two are dual to each other \& have isometry group of type H_{4}.

References:
[B]: N. Bourbaki, Lie groups \& Lie algebras. Ch. 4-6.
[C] H.S.M. Coxeter, Regular poly topes.

