Lecture A1: Around reflection group, 1

0) What is this about?

1) Reflection groups

2) Regular polytopes.

Refs: [B], Chapters 4 & 5: for Sec 1

[C] for Sec 2

0) What is this about?

In this course, we have considered (and will consider) a bunch of finite groups: symmetric groups, (binary) dihedral groups, the binary tetrahedral groups with some more to follow.

These groups have some shared significance: they have to do with reflection groups, root systems and such.

This series of four lectures talks about these objects.

1) Reflection groups

1.1) Definition and examples

Let \(V \) be a finite dimensional vector space over \(\mathbb{R} \) equipped...
w. a scalar product. So we can consider its orthogonal group, $O(V)$.

Definition:
- By a reflection in $O(V)$ we mean the orthogonal reflection about a hyperplane, equivalently, an element $s \in O(V)$ w. $\ker(s - id_V) = 1$ (so that $\ker(s - id_V)$ is that hyperplane).
- By a reflection group in $O(V)$ we mean a finite subgroup generated by reflections.

Examples:
1) The dihedral group of order $2n$, i.e. the group of isometries of the regular n-gon in a 2-dimensional space V. This is denoted by $I_2(n)$.

2) Consider the space $V = \mathbb{R}^n$ w. the standard scalar product. The $G = S_n$ acting on \mathbb{R}^n via its permutation representation is a reflection group: a transposition (ij) acts as the orthogonal reflection about the hyperplane $x_i = x_j$.

Note that the line $\{(x_2, \ldots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 0\}$ is its orthogonal complement. Note that
$S_n \leftrightarrow O(\mathbb{R}^n)$ and is also a reflection group there. Note that \mathbb{R}^n is an irreducible as a representation of S_n, it's called the reflection representation. The reflection group S_n acting on \mathbb{R}^n is often said to be of type A_n, ($n-1 = \dim \mathbb{R}^n$).

3) Our vector space is still $V = \mathbb{R}^n$ and we consider the group of "signed permutations": transformations that send (x_1, \ldots, x_n) to $(\pm x_1, \pm x_2, \ldots, \pm x_n)$ for an arbitrary choice of signs. This group is isomorphic to $S_n \times (\mathbb{Z}/2\mathbb{Z})^n$. It is generated by reflections: about the hyperplanes $x_i = \pm x_j$ & $x_i = 0$. It's said to be of type B_n (or BC_n), the reason for the notation will be explained in the next part.

4) We can consider the subgroup of all elements in the group of type B_n that only change even number of signs. It's generated by the reflections about the hyperplanes of the form $x_i = \pm x_j$. It is said to be of type D_n.

3
1.2) Classification

A basic question is how to classify reflection groups $G \leq O(V)$ (up to equivalence: two pairs $G_1 \leq O(V_1), G_2 \leq O(V_2)$ are equivalent if \exists a linear isometry $\varphi : V_1 \to V_2$ s.t. $G_2 = \varphi G_1 \varphi^{-1}$). One can reduce to the case when V is irreducible over \mathbb{C}: if $V = V_1 \oplus V_2$, the direct sum of spaces w Euclidian scalar product s.t. both $V_1 \& V_2$ are G-stable, then there are reflection groups $G_i \leq O(V_i), i = 1, 2$, s.t. $G = G_1 \oplus G_2$ meaning that G consists of transformations $\text{diag}(g_1, g_2) \in \text{End}(V), g_i \in G_i$.

If V is irreducible over \mathbb{C}, then we say that G is an irreducible reflection group.

The crucial step in the classification is the notion of a chamber. By a reflection hyperplane for G we mean a hyperplane $H \subset V$ s.t. the reflection about H is in G. A chamber in V is the closure of a connected component of $V \setminus UH$, where the union is taken over all reflection hyperplanes. Here are examples of chambers.
Examples:

(I) Type A_n: the chambers are labelled by permutations and look like $\{(x_1,\ldots,x_n) | x_{g(1)} \geq x_{g(2)} \geq \cdots \geq x_{g(n)} \}^3$ for $g \in S_n$. An example is $\{(x_1,\ldots,x_n) | x_1 \geq x_2 \geq \cdots \geq x_n \}^3$.

(II) Type B_n: the chambers are labelled by signed permutations and look like $\{(x_1,\ldots,x_n) | x_1 \geq x_2 \geq \cdots \geq x_n \}^3$. An example is $\{(x_1,\ldots,x_n) | x_1 \geq x_2 \geq \cdots \geq x_n \}^3$.

Here are general facts about chambers:

Fact 1: G permutes the chambers simply transitively.

Fact 2: Let C be a chamber. Then every orbit of G intersects C at a single point.

In the examples above, these properties are immediate to check.

Exercise: Describe the chambers for the reflection groups of type D_n and check Facts 1 & 2.
By a wall of a chamber C we mean a reflection hyperplane H s.t. $\dim (CNH) = \dim V - 1$.

Examples: In Example I, the walls of the chamber

$C = \{(x_1, \ldots, x_n) \mid \sum_{i=1}^{n} x_i = 0 \& x_1 \geq \ldots \geq x_n \geq 0 \}$ are $x_i = x_{i+1}$ for $i = 1, \ldots, n-1$.

In Example II, the walls of the chamber $C = \{(x_1, \ldots, x_n) \mid x_1 \geq x_2 \geq \ldots \geq x_n \geq 0 \}$ are $x_i = x_{i+1}$, $i = 1, \ldots, n-1$, and $x_n = 0$.

Fact 3: If G is irreducible, then each chamber has exactly $\dim V$ walls.

Now from G we produce an unoriented multi-graph called the Coxeter diagram. Its vertices are walls. We connect two vertices, H, H', with an edge if the angle between H and H' is $< \frac{\pi}{k}$. If the angle is $\frac{\pi}{k}$ with $k > 3$, we put k as decoration on the edge. We note that the angle is always $\frac{\pi}{k}$, where k is the order of $s_H s_{H'}$, with $s_H, s_{H'}$.
being the reflections about H & H.

Examples: I: $\cdots \bullet \ i \ 3 \ \cdots \ n-2 \ n-1$
where i corresponds to the wall $x_i = x_{i+1}$.

II: $\cdots \bullet \ i \ 3 \ \cdots \ n-2 \ n-1 \ 4 \ \cdots \ n$
where i corresponds to the wall $x_i = x_{i+1}$ for $i < n$ & to $x_n = 0$
for $i = n$.

Exercise: The Coxeter diagram of type D_n is

\[\cdots \bullet \ 3 \ \cdots \ n-2 \ n-1 \ n \]

Here's the main classification results.

Thm: 1) An irreducible reflection group is uniquely determined
by its Coxeter diagram.

2) The following Coxeter diagrams can appear from irreducible
reflection groups (the index is always the dimension of V):

- A_n ($n+1$), B_n ($n+2$), D_n ($n+4$), see above.
The diagrams E_6, E_7, E_8:

\[\begin{array}{ccc}
E_6 & \cdots & E_7 & \cdots & E_8 \\
\vdots & ! & \vdots & ! & \vdots \\
\end{array} \]

- The diagram F_4:

- The diagrams H_3, H_4:

- The diagram $I_2(n)$ for $n \geq 5$ (corresponding to the dihedral groups ($n=3$ is A_2, $n=4$ is B_2, and $n=6$ case is known as G_2).

2) Regular polytopes

The regular polytopes is one source of how reflection groups arise (another source, root systems, will be considered in the next lecture).

We consider convex polytopes in a Euclidean space V, i.e. the convex hull of a finite subset of V. For a convex polytope we can consider its k-dimensional faces (that are assumed to be closed) as well as complete flags of faces: sequences

$F_1 \subset F_2 \subset \ldots \subset F_{n-1}$, where F_i is a face of dim i.
Example: For a triangle we have six complete flags that look like:

(we really need to take the closure of F_2, but this is hard to depict).

Definition: A polytope P is called regular if for any two complete flags of faces, there's an isometry of P mapping one flag to the other.

We can consider the group $\text{Iso}(P)$ of P: its elements are the isometries of V fixing P. Now suppose that the center of P is $0 \in V$ (so that the isometry group $\text{Iso}(P) \subset O(V)$).

Thm: $\text{Iso}(P)$ is a reflection group.

Examples: 1) dim 2. The isometry group of a regular n-gon is $\text{I}_2(n)$.

2) dim 3. There are five regular 3D polytopes: the tetra-
hedron, cube, octahedron, icosahedron & dodecahedron. The cube & octahedron share the same isometry group (they are "dual" to each other: to get the regular octahedron from the cube, take the convex hull of the centers of dimension $\dim V-1(=2)$ faces; the same procedure produces the cube out of the regular octahedron). The same applies to icosahedron vs dodecahedron.

The reflection groups that appear are A_3 (for the tetrahedron), B_3 (for the cube/octahedron), H_3 (for the icosahedron/dodecahedron).

Sketch of proof of Thm:

If F, F' are complete flags of faces, then $\exists! \theta \in \text{Iso}(P)$ w. $\theta(F) = F'$. Now suppose that $F = (F_1 \subset F_2 \subset \ldots \subset F_n)$, $F' = (F'_1 \subset F'_2 \subset \ldots \subset F'_n)$ satisfy $F_j = F'_j$ for $j \neq i$ (w. some i). We claim that θ mapping F to F' is a reflection (the corresponding reflection hyperplane is spanned as a subspace by the centers of the faces $F_j, j \neq i$). One can then show that we can get any flag of faces from F by changing one face at a time. \Box
The classification of regular polytopes in dim=3 is as follows. There are three families that exist in all dimensions: the regular simplex (generalizing the regular tetrahedron; its isometry group has type A_n, where n is the dimension), the regular hypercube (generalizing the cube) and its dual (generalizing the regular octahedron). The latter two are dual to each other and their isometry groups are of type B_n.

In addition, in dim=4, there are three exceptional polytopes. One is self-dual w. isometry group of type F_4, the other two are dual to each other & have isometry group of type H_4.

References:

[B]: N. Bourbaki, Lie groups & Lie algebras. Ch 4-6.

[C]: H.S.M. Coxeter, Regular polytopes.