
 Lecture AG symplectic reflection
groups

e Motivation part 1
In this final lecture of the series we are going to

discuss the class of subgroups in u forsuitable U
that in a way generalizes complex reflectiongroups but

also the finite subgroups of 5410 that we have seen
in Homeworks t 83 These are so called symplectic

reflection groups These
groups are subgroups in symplectic

groups Splat so we will start by reviewing symplectic

vector spaces and symplecticgroups

01 Background on symplectic vector spaces
Let U be a finite dimensional vector space Q By

a symplectic form on U we mean a non degenerate skew

Asymmetric
bilinear form UxU 70 A usual notation



for such a form is w When U is equipped w a

symplecticform we say that it is a symplectic rectorspace

Example 1 On Q we have the symplectic form Let
Walla616,27 ad be Moregenerally on EP we can

consider the direct sum of several copies of Let
W x al ly yall IEWGigi Xiyield It is symplectic

Example 2 Let U be a finite dimensional vectorspace
Then U VEV carries a natural symplectic form
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In theprevious examples the space U is always even

dimensional This holds in general Moreover for every
symplectic form W there's a basis ato Urk Union EU

set the form is given on the bask by
W aiUj W viUj O WluiVj SigF W ujwill
Such a basis is usually called a Darbouxbasis

I



Forproofs see Sec 5.3 in V3

Remark One reason why symplectic structures are

interesting is that they appear in HamiltonianMechanics

e 2 Symplectic groups

Let U be a symplectic vector space w formW By
the symplectic group Splat we mean the subgroup of
all elements ge u that preserve w ie

Wlgugu wluv t quell

Example Let U Ver as in Example 2 ofSec e 1
We claim that the subgroup of all elements of Splat
that preserve the decomposition Us Vet is identified w
LIV Indeed forge LIV let g V v't be the
induced linear map given by 9 236 2gu An element

diag lg g
o Ver I Vev preserves w exercise

ghence lies in Sp u Conversely if heSpUlpreserves



the direct sum decomposition Vert then it is ofthe
form diaglgg't forg ht exercise

1 Symplectic reflection groups
11 Definition and basic examples
We start w an exercise Let U be e symplectic vector

space

Exercise Let goSplul be a finite order element Then
the restriction of w to u cUlgu u is nondegenerate

Hence dim ueUlgun is even dimensional

Se rialg ida 2 ifgtidu

Definition A symplectic reflection in Sp u is a finite

order element g s t riclg idu 2 A finite subgroup of

Sp U is called a symplectic reflectiongroup if it is

generated by symplectic
reflections



Example 9 Let him 4 2 Then every finite subgroup of
Sp u s SL f is a symplectic reflectiongroup

Example 2 Let GCSL a be a finite subgroup Let

U Q be equipped with the structure of a

symplecticvector space as in Example 1 of Sec 0.1 Set Ca

SnkGi We equip U with the structure of arepresentationofGn by letting Sn to permute the n summands

of E and the n copies of C to act on theircopies of a

comparewith the construction of all on cancel in Sect
of Lec A3 We leave it as an exercise to check thatthe

image of Cn in LIU lies in Sp16 and that it's generated

by symplectic reflections

Example 3 Let G GLlu be a complex reflectiongroup
Embedding GLIM into Splat w V UOU'tas explained
in Sec 0.2 we can view h as a subgroup in Sp u

Egery
complex reflection in Cllr is a symplectic reflection



in Splat So GcSpla is a symplectic reflectiongroup
Note that applying this construction to Cle1Mcallen
we get the group SukGicSp let w

6 dingle E'll ele

Symplectic reflectiongroups were classifiedby
Cohen

in 1980

12 Classification in dim2
The classification in general isn'tparticularly nice but

it is very nice in
dimension 2 where we are concerned w

describing the finite subgroups of Style up to conjugation
in SL E

Theorem Up to conjugation in Shel thefinite
subgroups in Sheff different from a are classifiedby

Dynkin diagrams of types An n M Dn non EsEs Es

I



Examples The cyclic group diag e e e i corresponds to

the diagram An while the binary dihedralgroup w 4h elements

corresponds to the diagram Dna

Sketch ofproof of Them

Let C denote a finite subgroup of Slice
Step P Recall See 1.3 ofLee6 that there's a G

invariant hermitian scalarproduct on Q Equivalently G
is conjugate in Shell to a subgroup in Sly thegroup of

unitary transformations of Q w determinant 1 One can further

show that if finite subgroups of SU are conjugate in

54107 then they are conjugate in Sth So we reduce our

problem to classifying finite subgroups of SU up to

conjugacy
Step2 There's a group epimerphism SU Se R It's

constructed as fellows Let H denote the space ofHermitian2 2matrices it's e 3 dimensional vector space ever

HR that
comes w Euclidean scalarproduct AB tr AB



The group SU acts on th by g Agag This action is
by linear isometries preserving the scalarproduct Thisdefines

a group homomorphism
from SU to the orthogonalgroupofth

which is identified w 0311321 One can show in the increasing
order of difficulty that

the kernelof this homomorphism is 4 I where I isthe

identity

the image is contained in 50,1132 can bededucedsay

from the spectral theorem

the image coincides w So B2

Step3 The classification of finite subgroups of Sl R
is known see Problem 4.12.8 in LE The answer is as follows

these subgroups are either theimage of the two families ofthe

subgroups in Example above or groups of rotations t
symmetriespreserving the orientation of the regular polyhedra the

tetrahendren the cube octahedron andthe icosahedron

dodecahedron
A



Step4 New we have classified all finite subgroups of

SO R By taking thepreimage we recoverthe classification

of the finite subgroups of SU containing II On the
other hand if he Su is a finite subgroup then I

is also a finite subgroup So to complete the classification

we need to answer the following question when a finite

subgroup Éc SU contains a subgroup c É s t I 4 C

C I G One can analyzethis case by case and

concludethat this is only possible for a diag e E'll ett w

odd E G diag le Elle B

Step 5 It remains to assign a Dynkindiagram to

each of thegroups cyclic binarydihedral andthe three

exceptionalgroups binary tetrahedral octahedraland
icosahedral ones This is done using therecipe outlined in

Psets 1 3 we form the unorientedgraph whose vertices

correspondto the irreducible representations of G and between
vertices UU we have dimHom E'QU U edges Then we

I



remove the vertex corresponding to the trivial representation

getting e Dynkin diagram It's a matter ofcomputation to
show that

The cyclic group w n elementsgives the diagramof

type An

The binary dihedralgroup w 4h elements corresponds to

Dna
The binary tetrahedral octahedral icosahedralgroups

correspond to Eg Eg Eg respectively D

d


