Lecture A4: symplectic reflection groups.
0) Motivation, part 1.

In this final lecture of the series we ave going to discuss the class of subgroups in $G L(U)$ (for suitable U) that, in a way, generalizes complex reflection groups but also the finite subgroups of $S L_{2}(\mathbb{C})$ that we have seen in Homework 1\&3. These are so called "symplectic reflection groups." These groups are subgroups in symplectic groups Sp (U), so we will start by reviewing symplectic vector spaces and symplectic groups.
0.1) Background on symplectic vector spaces.

Let U be a finite dimensional vector space \mathbb{C}. By a symplectic form an U we mean a non-degenerate skew$7_{1}^{\text {symmetric bilinear form } U \times U \rightarrow \mathbb{C} \text {. A usual notation }}$
for such a form is w. When U is equipped w a symplectic form, we say that it is a symplectic vector space.

Example 1: On \mathbb{C}^{2}, we have the symplectic form, "Let:" $\omega_{1}((a, b),(c, \alpha))=a \alpha-b c$. More generally on $\left(\mathbb{C}^{2}\right)^{\oplus n}$ we can consider the direct sum of several copies of dec: $\omega\left(\left(x_{1}, \ldots x_{n}\right),\left(y_{1}, \ldots y_{n}\right)\right)=\sum_{i=1}^{n} \omega_{1}\left(x_{i}, y_{i}\right), x_{i}, y_{i} \in \mathbb{C}^{2}$. It is symplectic.

Example 2: Let V be a finite dimensional vector space. Then $U=V^{*} \oplus V$ carries a natural symplectic form

$$
\omega\left((\alpha, v),\left(\alpha^{\prime}, v^{\prime}\right)\right)=\alpha\left(v^{\prime}\right)-\alpha^{\prime}(v), \alpha, \alpha^{\prime} \in V^{*}, v, v^{\prime} \in V .
$$

In the previous examples the space U is always even dimensional. This holds in general. Moreover, for every symplectic form ω, there's a basis $u_{1}, v_{1}, u_{2}, v_{2}, \ldots u_{n}, v_{n} \in U$ s.t. the form is given on the basis by:

$$
\omega\left(u_{i}, u_{j}\right)=\omega\left(v_{i}, v_{j}\right)=0, \omega\left(u_{i}, v_{j}\right)=\delta_{i j}\left(=-\omega\left(v_{j}, u_{i}\right)\right) .
$$

Such a basis is usually called a Darboux basis.

For proofs see $\operatorname{Sec} 5.3$ in [V].

Remark: One reason why symplectic structures ave interesting is that they appear in Hamiltonian Mechanics.
0.2) Symplectic groups.

Let U be a symplectic vector space w. form w. By the symplectic group, $S_{p}(U)$, we mean the subgroup of all elements $g \in C l(u)$ that preserve ω, i.e.

$$
\omega(g u, g v)=\omega(u, v) \quad \forall u, v \in U .
$$

Example: Let $U=V \oplus V^{*}$ as in Example 2 of $\operatorname{Sec} 0.1$ We claim that the subgroup of all elements of Sp (u) that preserve the decomposition $U=V \oplus V^{*}$ is identified w. $G L(V)$. Indeed, for $g \in C L(V)$, let $g^{*}: V^{*} \rightarrow V^{*}$ be the induced linear map (given by $\left.\left[g^{*} \alpha\right](v)=\alpha(g v)\right)$. An element $\operatorname{diag}\left(g, g^{*-1}\right): V \oplus V^{*} \xrightarrow{\sim} V \oplus V^{*}$ preserves ω (exercise) \& hence les in $S_{p}(U)$. Conversely, if $h \in S_{p}(u)$ preserves
the direct sum decomposition $V \oplus V^{*}$, then it is of the form $\operatorname{diag}\left(g, g^{*-1}\right)$ for $g:=h l_{v}$ (exercise).

1) Symplectic reflection groups.
1.1) Definition and basic examples.

We start w. an exercise. Let U be a symplectic vector space.

Exerase: Let $g \in S p(U)$ be a finite order element. Then the restriction of ω to $\{u \in U \mid g u=u\}$ is nondegenerate.
Hence $\operatorname{dim}\{u \in U \mid g u=u\}$ is even dimensional.

So $r k\left(g-i \alpha_{u}\right) \geqslant 2$ if $g \neq i \alpha_{u}$.

Definition: A symplectic reflection in $S_{p}(U)$ is a finite order element g s.t. $r k\left(g-i d_{u}\right)=2$. A finite subgroup of $S_{p}(U)$ is called a symplectic reflection group if it is generated by symplectic reflections.

Example 1: Let $\operatorname{dim} U=2$. Then every finite subgroup of $S p(U)\left(\simeq S L_{2}(\mathbb{C})\right)$ is a symplectic reflection group.

Example 2: Let $G_{1} \subset S L_{2}(\mathbb{C})$ be a finite subgroup. Let $U=\left(\mathbb{C}^{2}\right)^{\oplus n}$ be equipped with the structure of a symplec. tic vector space as in Example 1 of $\operatorname{Sec} 0.1$ Set $G_{n}:=$ $S_{n} \ltimes G_{1}^{n}$. We equip U with the structure of a representstion of G_{n} by letting S_{n} to permute the n summands of \mathbb{C}^{2} and the n copies of G_{1} to act on their copies of \mathbb{C}^{2} (compare with the construction of $C(l, 1, n) \subset G L_{n}(\mathbb{C})$ in Sec 1 of Lee A3). We leave it as an exercise to check that the image of G_{n} in $G L(U)$ lies in $S_{p}(U)$ and that it's generated by symplectic reflections.

Example 3: Let $G \subset G L(v)$ be a complex reflection group. Embedding $G L(V)$ into $S_{p}(U)$ w. $V=U \oplus U^{*}$ as explained in Sec O.2, we can view G as a subgroup in $\operatorname{Sp}(U)$. Every complex reflection in $G L(v)$ is a symplectic reflection 5
in $S p(U)$. So $G \subset S p(U)$ is a symplectic reflection group. Note that applying this construction to $G(l, 1, n) \subset G L\left(\mathbb{C}^{n}\right)$ we get the group $S_{n} \times G_{1}^{n} \subset S_{p}\left(\left(\mathbb{C}^{2}\right)^{\oplus n}\right) w$.

$$
G_{1}=\left\{\operatorname{diog}\left(\varepsilon, \varepsilon^{-1}\right) \mid \varepsilon^{l}=1\right\}
$$

Symplectic reflection groups were classified by Cohen in 1980.
1.2) Classification in $\operatorname{dim} 2$.

The classification in general isn't particularly nice, but it is very nice in dimension 2 , where we are concerned w. describing the finite subgroups of $S L_{2}(\mathbb{C})$ Cup to conjugation $\left.\ln S L_{2}(\mathbb{C})\right)$.

Theorem: Up to conjugation in $S L_{2}(\mathbb{C})$, the finite subgroups in $S L_{2}(\mathbb{C})$ (different from $\{1\}$) are classified by Dynkin diagrams of types $A_{n}(n \geqslant 1), D_{n}(n \geqslant 4), E_{6}, E_{7}, E_{8}$.

Examples: The cyclic group $\left\{\operatorname{diag}\left(\varepsilon, \varepsilon^{-1}\right) \mid \varepsilon^{n}=1\right\}$ corresponds to the diagram A_{n-1}, while the binary dihedral group w. in elements corresponds to the diagram D_{n+2}.

Sketch of proof of Thy:
Let G denote a finite subgroup of $S L_{2}(\mathbb{C})$.
Step 1: Recall, Sec 1.3 of Lee 6, that there's a C. invariant hermitian scalar product on \mathbb{C}^{2}. Equivalently, G is conjugate $\left(\right.$ in $\left.S L_{2}(\mathbb{C})\right)$ to a subgroup in $S U_{2}$, the group of unitary transformations of $\mathbb{C}^{2} w$. determinant 1. One can further show that if finite subgroups of SU_{2} are conjugate in $S L_{2}(\mathbb{C})$, then they are conjugate in $S U_{2}$. So we reduce our problem to classifying finite subgroups of $S U_{2}$ up to conju. gary.

Step 2: There's a group epimorphism $\mathrm{SU}_{2} \rightarrow \mathrm{SO}_{3}(\mathbb{R})$. It's constructed as follows. Let H_{2} denote the space of Hermi. tan 2×2-matrices, it's a 3-dimensional vector space over \mathbb{R} that comes w. Euclidian scalar product: $(A, B):=\operatorname{tr}(A B)$. 7

The group SU_{2} acts on H_{2} by $g \cdot A=g \mathrm{Ag}^{-1}$. This action is by linear isometries preserving the scalar product. This defines a group homomorphism from $S U_{2}$ to the orthogonal group of H_{2}, which is identified w. $Q_{3}(\mathbb{R})$. One can show (in the increasing order of difficulty) that:

- the kernel of this homomorphism is $\{ \pm I\}$, where I is the identity.
- the image is contained in $\mathrm{SO}_{3}(\mathbb{R})$ (can be deduced, say, from the spectral theorem).
- the image coincides w. $\mathrm{SO}_{3}(\mathbb{R})$.

Step 3: The classification of finite subgroups of $\mathrm{SO}_{3}(\mathbb{R})$ is known, see Problem 4.12.8 in [E]. The answer is as follows: these subgroups are either the image of the two families of the subgroups in Example above or groups of rotations (= symmetvies preserving the orientation) of the regular polyhedra: the tetrahendron, the cube/octahedron and the icosahedron/dodecahadron.

Step 4: Now we have classified all finite subgroups of $\mathrm{SO}_{3}(\mathbb{R})$. By taking the preimage we recover the classification of the finite subgroups of $S U_{2}$ containing $\pm I$. On the other hand, if $G \subset S U_{2}$ is a finite subgroup, then $\{\{ \pm I\}$ is also a finite subgroup. So, to complete the classification we need to answer the following question: when a finite subgroup $\tilde{G} \subset S U_{2}$ contains a subgroup $G \subset \tilde{G}$ s.t. - I $\notin G \&$ $\{\{ \pm I\}=\tilde{G}$. One can analyze this case by case and concluce that this is only possible for $\tilde{C}=\left\{\operatorname{diag}\left(\varepsilon, \varepsilon^{-1}\right) \mid \varepsilon^{2 l}=1\right\} W$. odd $l \& G=\left\{\operatorname{diag}\left(\varepsilon, \varepsilon^{-1}\right) \mid \varepsilon^{l}=1\right\}$.

Step 5: It remains to assign a Dynkin diagram to each of the groups (cycle, binary dihedral and the three exceptional groups - binary tetrahedral, octahedral and icosahedral ones). This is done using the recipe outlined in Pets $1 \&$ 3: we form the unoriented graph whose vertices cares. pond to the irreducible representations of G and between vertices U, U^{\prime} we have $\operatorname{dim} \operatorname{Hom}_{G}\left(\mathbb{C}^{2} \otimes U, U^{\prime}\right)$ edges. Then we 9
remove the vertex corresponding to the trivial representation getting a Dynkin diagram. It's a matter of computation to show that:

- The cycle group w. n elements gives the diagram of type A_{n-1}
- The binary dihedral group w. in elements corresponds to D_{n+2}
- The binary tetrahedral, octahedral \& icosahedral groups correspond to E_{6}, E_{7}, E_{8}, respectively.

