Lecture B3: More on representations of symmetric groups, pt. 3
Schar polynomials.

1) Definition and basic properties.
2) Connections to Representation theory
3) Definition and basic properties.

Lecture 18 hints at the connection between representations of symmetric groups and symmetric polynomials. The goal of this bonus lecture is to elaborate on this connection. A special role in this connection - and other connections to Representation theory is played by a remarkable family of symmetric polynomials known as the Schur polynomials. A basic reference here for us is:
[F]: W. Fulton "Young tableaux. With applications to Representation theory \& Geometry."
1.1) Equivalent definitions.

The first definition uses Kostra numbers mentioned in the end of $\operatorname{Sec} 1.2$ in Lea 18. Let $K_{\lambda \mu}$ be the Kostko number, i.e. the number of Young tableaux of shape λ and weight μ. Fix $n \in \mathbb{Z}_{\geqslant 0}$ and choose $N \geqslant n$. Define the monomial symmetric polynomial m_{λ} as the sum of all monomials of the form $x_{\tau(0)}^{\lambda_{1}} x_{\tau(2)}^{\lambda_{2}} \ldots x_{\tau(N)}^{\lambda_{N}}$ for $\tau \in S_{N}(w$. multiplicity 1). For example, for $\lambda=(n)$, we have $m_{\lambda}=\rho_{n}$ (the power symmetric polynomial), while for $\lambda=(1, \ldots, 1)$, we have $m_{\lambda}=e_{n}$ (the elementary symmetric polynomial).

Definition: Let λ be a partition of n. Define the Schur polynomial S_{λ} as $\sum_{\mu} K_{\lambda \mu} m_{\mu}$, where the sum is taken over all partitions μ of n.

Example: Let $\lambda=(n)$. Then $K_{\lambda \mu}=1$ for all μ. So $S_{(n)}$ is the "complete symmetric polynomial": the sum of all deg n monomials w. coefficient 1, e.g

$$
S_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3} .
$$

Now let $\lambda=(1, \ldots 1)$ (ntimes). Then $s_{\lambda}\left(x_{1} \ldots x_{N}\right)=e_{n}\left(x_{1} \ldots x_{N}\right)$, exercise.

Now note that m_{μ} 's form a basis in the abelian group $\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]_{n}^{S_{N}}$ of deg h homogeneous symmetric polynomials w. integral coefficients. Note also that $K_{\lambda \lambda}=1 \& K_{\lambda \mu} \neq 0 \Rightarrow$ $\lambda \geqslant \mu$ in the dominance order (ie $\sum_{i=1}^{k} \lambda_{i} \geqslant \sum_{i=1}^{k} \mu_{i} \forall k$). It follows that the polynomials S_{λ} also form a basis in $\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]_{n}^{S_{N}}$.

Now we are going to give a definition of a very different nature. We can talk about anti-symmetric polynomials in $\mathbb{Z}\left[x_{1}, \ldots x_{N}\right]$: those that switch the sign when we permute $x_{i} \& x_{j}$ for $i \neq j$. Every such polynomial is divisible by $x_{i}-x_{j}$ and, since $\mathbb{Z}\left[x_{1}, \ldots x_{N}\right]$ is a UFD by $\prod_{i<j}\left(x_{i}-x_{j}\right)=\Delta$ (the Vandermonde).

Here's a relevant example of an anti-symmetric polynomial: $\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)_{i, j=1}^{N}$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is a partition of n. So $\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right) / \Delta$ is a polynomial, in fact, symmetric.

The following result is known as the Jacabi-Trudi formula:

Theorem: $S_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right) / \Delta$
For a sketch of proof and references see $\operatorname{Sec} 6.1$ in $[F]$.
1.2) Bilinear form

Since the S_{λ} 's form a basis in $\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]_{n}^{S_{N}}$ we have the unique \mathbb{Z}-bilinear symmetric form, $(\because \cdot)$, an this abelian group s.t. $\left(s_{\lambda}, s_{\mu}\right)=\delta_{\lambda \mu}$.

We want to compute this pairing on some other symmetvic polynomials. In Lec 17 we have introduced the polynomials $p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \ldots p_{\lambda_{k}}$, where $\lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \geqslant \lambda_{k}>0\right)$ is a partition of n. Another family we will need is h_{λ}. Here

$$
h_{\lambda}=S_{\left(\lambda_{1}\right)} \ldots S_{\left(\lambda_{k}\right)}
$$

The following is Proposition 3 in Sec 6.2 of [F].

Theorem: We have $\left(p_{\lambda}, p_{\mu}\right)=z(\lambda) \delta_{\lambda \mu}$, where $z(\lambda)$ is the order of the centralizer of an element w. cycle type λ in S_{n} (see Exeruse in Sec 1.3 of $\operatorname{Lec} 18)$. Also $\left(h_{\lambda}, m_{\mu}\right)=\delta_{\lambda \mu}$.
1.3) Remark on the number of variables.

Above we considered the situation, where the number of variab. les, N, is $\geqslant n$, the degree. We can omit this restriction and still consider the polynomials, $m_{\lambda}, s_{\lambda}, h_{\lambda}$ etc, with the same definitions. Note that $m_{\lambda}\left(x_{1}, \ldots x_{N}\right)=0$ if λ has more than N parts, while the polynomials $m_{\lambda}\left(x_{1}, x_{N}\right)$, where λ has $\leqslant N$ parts, form a basis in $\mathbb{Z}\left[x_{1} \ldots x_{N}\right]^{S_{N}}$.

Exeruse: The polynomials $s_{\lambda}\left(x_{1}, \ldots x_{N}\right)$, where λ has $\leqslant N$ parts, form a basis in $\mathbb{Z}\left[x_{1}, \ldots x_{N}\right]^{S_{N}}$ (in particular, are nonzero).
2) Connections to Representation theory
2.1) Symmetric groups.

Let $N \geqslant n$. We define the Frobenius character F_{v} of a representation V of S_{n} to be the following deg n element of $\mathbb{Z}\left[x_{1}, \ldots x_{N}\right]^{S_{N}}$: if n_{λ} is the multiplicity of V_{λ} in V, then
(*) $F_{v}=\sum_{\lambda} n_{\lambda} s_{\lambda}\left(x_{1} \ldots x_{N}\right)$,
where the sum is taken over all partitions of λ of n.
One can ask why to give this definition. Here's some way to answer.

Proposition: Let V_{1}, V_{2} be representations of $S_{n_{1}}, S_{n_{2}} w . n+n=n$, we can $V_{1} \otimes V_{2}$ as a representation of $S_{n_{1}} \times S_{n_{2}}$. Set $V=\operatorname{In} \alpha_{S_{n^{2}} \times S_{n^{2}}}^{S_{n}} V_{1} \otimes V_{2} \quad$ Then
(1)

$$
F_{V}=F_{V_{1}} F_{V_{2}}
$$

Proof: We start by showing that $F_{I_{\lambda}^{+}}=h_{\lambda}$. Recall, Remark in Sec 1.2 of Lee 18, that

$$
I_{\lambda}^{+} \simeq \bigoplus_{\mu} V_{\mu}^{\oplus K_{\mu \lambda}}
$$

So, by $(*), F_{I_{\lambda}^{+}}=\bigoplus \bigoplus_{\mu} K_{\mu \lambda} S_{\mu}$. Recall that $S_{\lambda}=\sum_{\mu^{\prime}} K_{\lambda \mu} m_{\mu}$, and, by $\operatorname{Sec} 1.2, \quad\left(h_{\lambda}, m_{\mu}\right)=\left(s_{\lambda}, s_{\mu}\right)=\delta_{\lambda_{\mu}}$. This implies that the coefficient of m_{μ} in S_{λ} is equal to the coefficient of $S_{\lambda} \operatorname{in} h_{\mu}$ for all λ, μ. So $F_{I_{\lambda}^{+}}=h_{\lambda}$ for all λ.

This equality implies (1) when $V_{1}=I_{\lambda^{1}}^{+}, V_{2}=I_{\lambda^{2}}^{+}$for auditvary partitions λ^{1} of $n_{1} \& \lambda^{2}$ of n_{2}. Notice that we can express the character of arbitrary V_{1} as a \mathbb{Z}-linear combine$\frac{\text { tron of }}{6}$ characters of $I_{\lambda^{\prime \prime}}^{+}$(it's enough to show this for
$V_{1}=V_{\mu^{1}}$ for some μ^{\prime}, here it follows from the observation that the matrix $\left(K_{\lambda_{\mu^{\prime}}}\right)$ is uni-triangular for a suitable order on partitions). The same, of course, works for V_{2}. This abserwation allows to deduce (1) for arbitrary V_{1}, V_{2} to the case $V_{1}=I_{\lambda^{\prime}}^{+}$, $V_{2}=I_{\lambda^{2}}^{+}$. To make this rigorous in an exeruse, you may note that the assigment $V \mapsto F_{V}$ factors through $K_{0}\left(\operatorname{Rep}\left(S_{n}\right)\right)$ and the classes $\left[I_{\lambda}^{+}\right]$form a basis in the free abelian group $K_{0}\left(R_{e p}\left(S_{n}\right)\right)$ (for details on K_{0} see the bonus part of Lee 11).
2.2) General linear groups.

Here we are in the setting of Lecture B2. Assume, for simplicity, that the base field in \mathbb{C}.
Recall from Lee 22, that to a partition λ of α we can assign the polynomial degree α representation $S^{\lambda}(V)$ of $C L(V)$.

Assume $\operatorname{dim} V=m$. We claim that we can interpret the cheracter X_{U} of a polynomial deg α representation U as an element of $\mathbb{Z}\left[x_{1}, \ldots x_{m}\right]^{S_{m}}$. Observe that the diagonalizable matrices ave
dense in $G_{m}(\mathbb{C})$. Since the matrix coefficients of U are polynomials in the matrix entries, so is the character. Therefore, it's uniquely determined by its restriction to any dense subset of $G_{m}(\mathbb{C})$, in particular, to the Liagonalizable matrices.

Now we use that X_{u} is conjugation invariant. So it's uniquely determined by its restriction to diagonal matrices. This restriction is a polynomial in the diagonal matrix entries, and it's symmetric: diagonal matrices that differ by a permtaction of entries are conjugate. This is how we view X_{a} as a symmetric polynomial.

Examples: Let T denote the subgroup of diagonal matrices, and $v_{1}, \ldots v_{m}$ be the tautological basis in V so that for $t=$ $\operatorname{diag}\left(t_{1}, \ldots t_{m}\right) \in T$ we have $t \cdot v_{i}=t_{i} v_{i}$.

1) $X_{V} \leftrightarrow \sum_{i=1}^{m} x_{i}$
2) Since $X_{V \otimes \alpha}=X_{V}^{d}, X_{V \otimes \alpha} \longleftrightarrow\left(\sum_{i=1}^{m} x_{i}\right)^{\alpha}$
3) Let $u=S^{\alpha}(v)$. It hes basis $v_{1}^{\alpha_{1}} \ldots v_{m}^{\alpha_{m}}\left(\alpha_{1}+\ldots+\alpha_{m}=\alpha\right) \&$ $t .\left(v_{1}^{\alpha_{1}} \ldots v_{m}^{\alpha_{m}}\right)=t_{1}^{\alpha_{1}} \ldots t_{m}^{\alpha_{m}}$. It follows that $X_{S^{\alpha}(v)}$ corresponds to 8
$\sum_{\left(\alpha_{1}, \ldots \alpha_{m}\right)} x_{1}^{\alpha_{1}} \ldots x_{m}^{\alpha_{m}}$, the complete symmetric polynomial, i.e. $S_{(\alpha)}\left(x_{1}, \ldots x_{m}\right)$.
Recall (Sec 1.2 of Lee $B 2$) that $S^{(\alpha)}(v)=S^{d}(v)$.
4) Let $U=\Lambda^{\alpha}(u)$. It has basis $v_{i_{1}}^{\wedge} v_{i_{2}} \wedge \wedge^{\wedge} v_{i_{\alpha}} w . i_{1}<i_{2} \lll i_{\alpha}$.

So $X_{\Lambda^{d}(v)} \leftrightarrow e_{\alpha}\left(x_{1}, x_{m}\right)$. Recall that, for $\lambda=(1,1, \ldots, 1)$, we have $S_{\lambda}=e_{\alpha} \& S^{\lambda}(V)=\Lambda^{\alpha}(V)$.

The following result, Theorem 5.23.2, relates $X_{S^{\lambda}(v)}$ to the Schur polynomials generalizing the example.

Theorem: $S_{\lambda}\left(x_{1}, \ldots x_{m}\right)$ is the symmetric polynomial corresponding to $S^{\lambda}(v)$.

Exerase: Use Exercise in Sec 1.3 to conclude that $S^{\lambda}(v) \neq\{0\}$ if λ hes $\leqslant m$ parts.

