Lecture 10.

o) Where we are.
1) Nilpotent cone.
2) Categorical quotient for Grigg & Poisson deformations
Ref: [B], Ch. 8, Secs 8,10; [CG], Sec. 3.2; [E], Ch. 17 & 18; [Ko]

0) Where we are. We have defined positively graded Poisson algebras A (A<0={03, A0=C, deg {; 3=-d) and posed the problems of classifying their filtered Poisson deformations & filtered quantizations. We are only going to approach this problem in the case when A = C[X] for a conical symplectic singularity X. Our main example of X is Spec C[O], where I is a G-equivariant cover of a nilpotent orbit O cg. In this lecture we will concentrate on the special case, where $\hat{O} = \hat{O}$ is the so called principal nilpotent orbit, and X is the "nilpotent cone". We will produce examples of filtered Poisson deformations; filtered quantizations are for the next lecture.

1) Nilpotent cone. Let G be a semisimple algebraic group & og=Lie(G). Definition: The nilpotent cone N:= Execut is nilpotent 3.

Example: For $q = S_h$, we get $N = \{x \in q \mid X_k(x) = 0, k = 2, \dots, n\}$, where $X_{\mu}(x) = coeffit$ of t^{μ} in the char. polynomial det (x - tI).

Exercise 1: N is a closed subvariety for any of.

Theorem:]! nilpotent orbit Oco s.t. N= D. It's called principal and has dim = dim og - rk og (rk og = dim 5).

Example: of= 31,: principal (=> single Jordan block.

Proof: Step 1: Let of = n_& how be the triangular decomposition. We claim that N=GK. Indeed, let eEN. The subalgebra Cecoj is abelian, hence solvable, hence conjugate to a subalgebra in the Borel b=b⊕h. But h={x∈b|x is nilpotent}, so e is conjugate to an element of $h \Leftrightarrow N = Ch.$

Step 2: Define an sh-triple (e, h, f) in of as follows. Let Π = Δ, = b* be systems of simple & positive voots. Set h= Z d'e b. Define 1° (BEN) as the coefficient of B' in h so that h= Z r B. Choose St-triples (e, p, f), BEIT W. $e_{\beta} \in \sigma_{\beta}, f_{\beta} \in \sigma_{-\beta}$ (root subspaces) and set $\mathcal{L} = \sum_{\beta \in \Pi} \sqrt{r_{\beta}} e_{\beta}, \ f = \sum_{\beta \in \Pi} \sqrt{r_{\beta}} f_{\beta}.$ Exercise 2 (e.g. [B], Ch. 8, Sec. 10.4) 1) < B, h7 = 2 4 BE M 2) (e,h,f) is indeed an SL-triple.

Set Opr:= Ge.

Step 3: Consider the grading $\sigma = \bigoplus_{i \in T} \sigma_i$ by eigenvalues of h. Exercise 3: 0]=5, 9]= 9]== h.

Consider the variety Y = G × Popz = [P=B, the Borel]= G×^Bh from Sec 3 of Lec 8. By the theorem in that section, $Y \xrightarrow{\pi} O_{pr}$ is a resolution of singularities $\Rightarrow \dim O_{pr} = \dim Y$ = dim of - dim b + dim h = dim of - rk of. Also im T = Gh and by Step 1, Ōpr=im J= N. 31 \square

Kemarks: 1) Kostant proved that N is normal, we'll comment on this later. So C[N] = C[Qpr] = C[Qpr]. the 2nd term.

2) Note that $n = b^{\perp}$ w.r.t. Killing form. So $G \times {}^{B}h \simeq G \times {}^{C}(\sigma/b)^{*}$ = T*(G/B). This is a symplectic variety & G O, T*(G/B) is Hamiltonian (Sec 2 of Lec 2) and $\pi: T^*(G/B) \longrightarrow \sigma_1(\simeq \sigma_1^*)$ is the moment map (exercise). The map 9r: T*(G/B) ->> N is an example of a symplectic resolution. It's known as the Springer resolution - it's one of the most important morphisms in the geometric representation theory.

2) Categorical quotient for GD og & Poisson deformations Consider the quotient morphism The of - of 116. We'll see that: · Haeog//C, C[sr-'(a)] carries a natural Poisson algebra structure. · $\mathbb{C}[\pi_{G}^{-1}(0)] \simeq \mathbb{C}[\mathcal{O}_{pr}], a graded Poisson algebra isomorphism.$ • $\mathbb{C}[\pi_{c}^{-1}(a)]$ can be viewed as a filtered Poisson deformation of $\mathbb{C}[\pi_{c}^{-\prime}(o)].$

We start w. following classical result.

Theorem (Chevelley, [B], Ch. 8, Sec 8): Let bcog, WCGL(B) be Cartan subalgebre. & Weyl group. Then the restriction homomorphism $\mathbb{C}[g] \longrightarrow \mathbb{C}[\xi]$ restricts to $\mathbb{C}[g]^{\zeta} \xrightarrow{\sim} \mathbb{C}[\xi]^{W}$

Recall (Chevalley - Shephard - Todd Thm from Sec 2.2 of Lec 9) that 5/W is smooth CLGIW is positively graded, so CLGIW is the algebra of polynomials in rk og homogeneous elements, say f.,...f.

2.1) Deformations of CLN] Proposition: The following are true: (i) $N = \pi_c^{-1}(0)$ as subsets of of. ii) $f_{1,...,}, f_{r} \in \mathbb{C}[\sigma]$ form a regular sequence (Sec 1.1 in Lec 9) iii) Cloy] is a free graded Cloy]'-module. iv) $\pi_{c}^{-1}(0)$ is reduced and normal as a scheme.

Sketch of proof: (i): $N \subset \pi_{G}^{-1}(0)$: in the proof in Sec 2.2 of Lec 7 (after Exer 7) we've see that te $\in \mathcal{L}e \Rightarrow \pi_{\zeta}(te) = \pi_{\zeta}(e) + t \in \mathbb{C}^{\times} \Rightarrow \pi_{\zeta}(e) = 0.$ 5

• $\pi_{G}^{-1}(o) \in \mathbb{N}$: let $p: \sigma \to \mathcal{S}^{1}(V)$ be a faithful representation. Let XV. ... XV, the the coeff's of the char polynomial of p(x), x=0]. Then $\mathcal{I}_{v,i} \in Max$ ideal of 0 in $\mathbb{C}[\sigma_j]^{L}$. So $\mathcal{I}_{v,i}(x) = 0$ for $x \in \mathcal{I}_{\mathcal{L}}^{-1}(0)$. Hence x acts on V by a nilpotent operator \iff x \in N.

(ii) Follows from (i) & codim of Sc-'(0) = codim N=r.

(iii) We'll use the following important fact (vanishing of the 1st Koszul homology):

Fact ([E], Cor. 17.5): Let R be a Noetherian commutative ring. Suppose $f_{1,...,f_{k}} \in R$ is a vegular sequence, and $b_{1,...,b_{k}} \in R$ are s.t. Sfibi = 0. Then I bij ER w. bij = 0, bij = - bij s.t. $b_i = \sum_{j=1}^{n} b_{ij} f_j.$

Now we get back to (iii). The algebra ([JT-1(0)] is graded. Pick a homogeneous vector space basis $\underline{b}_i \in \mathbb{C}[\pi_{\alpha}^{-1}(0)]$, $i \in \mathbb{I}$, & lift it to homogeneous bie Cloy] By the graded Narayame. lemma, b; (iEI) span the Clog I-module Clog], while Fact 6

implies they are linearly independent (exercise).

iv) By (ii), $\pi_{c}^{-\prime}(o)$ is a complete intersection. By Serre's normality criterium ([E], Thm 18.5) we need to show that {XEN dx Jc is not surjective } has codim 72 in N. Kostant proved, [Ko], that d, T is surjective & x & Opr. Now we use that codim_N N Opr = 2 and finish the proof. I

Corollary: For $a \in \beta/W$ consider the filtration on $\mathbb{C}[\mathcal{I}_{G}^{-1}(a)]$ induced by the grading on Cloy]. Then we have a natural isomorphism $\mathbb{C}[\pi_{\zeta}^{-1}(o)] \xrightarrow{\sim} \operatorname{gr} \mathbb{C}[\pi_{\zeta}^{-1}(a)].$

Proof: Set $a_i = f_i(a), i = 1 \dots r$. Then $\mathbb{C}[\overline{\sigma_i}^{-1}(a)] = \mathbb{C}[\sigma_i]/(f_i - a_i)_{i=1}$ $C[\pi_{c}^{-1}(o)] = C[\sigma]/(f_{i})$. We have the natural graded epimorphism ([g] ->> gr [[J] '(a)] that sends the firs to 0 so factors through C[I_1'(0)] (*) or C[I_1'(a)]. It sends the birs from the proof of (iii) in Proposition to the image of the birs in C[JTG1(a)]. Since bis form a basis in the C[og]-module C[og], their images in $\mathbb{C}[\pi_{G}^{-1}(a)]$ form a basis, so (*) in an iso. \Box 7

2.2) Poisson structures. Recall that: (I) S(og) = C[og*] has the unique Poisson structure w. {3, p}= =[z, p] # z, peq. (II) If X is a Poisson variety & GAX is a Hamiltonian action, then the comment map = +> Hz satisfies HIZZ = EHz Hz Z. So it extends to a Poisson algebra homomorphism [[g*] - [[X].

Definition: The center of the Poisson algebra A is {ZEA! {Z,a]=0 H a e A}. It's a subalgebre.

Exercise 1: The center of Clog*] is Clog*] (hint: the former is {z \in C[0]*] { 5,23=0 # = 60] }.

Now apply (II) to $X = O_{pr}$. The moment map $\mu: O_{pr} \to o_{f}^{*}$ (=g) factors as $Q_{pr} \rightarrow Q_{pr} = N \rightarrow \sigma$ Since $C[Q_{pr}] = C[\overline{Q}_{pr}],$ Rem 1 in Sec 1, we see that the epimorphism $\mathbb{C}[q^*] \longrightarrow \mathbb{C}[\mathfrak{R}_{c}^{-1}(o)] = \mathbb{C}[\mathcal{O}_{pr}]$ is Poisson.

8

Exercise 2: Let A be a Poisson algebra, Z be its center, & I < Z an ideal. Then A/AI carries the unique Poisson bracket s.t. A ->> A/AI is a Poisson algebre, homomorphism.

Applying this to A= C[og*] & the maximal ideal I < C[og*] of $a \in g^* / C$ we get a Poisson bracket on $C[g^*] / C[g^*]I = C[\pi_C^{-1}(a)]$

Exercise 3: 1) This Poisson bracket on $C[\pi_{c}^{-1}(a)]$ has deg ≤ -1 w.r.t. the filtration on $\mathbb{C}[J_{\zeta}^{-1}(\alpha)]$ 2) The isomorphism $\mathbb{C}[\pi_{c}^{-1}(o)] \longrightarrow \operatorname{gr} \mathbb{C}[\pi_{c}^{-1}(a)]$ is Poisson.

So we have constructed a family of filtered Poisson deformations of [[N] parameterized by points of g/16 ~ K/W.

The following exercise examines the structure on $\pi_{G}^{-1}(\alpha)$.

Exercise 4: 1) The unique closed G-orbit in Tig"(a) is s/simple. 2) TC-'(a) contains the unique open orbit, say Opra 3) $\mathbb{C}[\pi_{c}^{-\prime}(\alpha)] \xrightarrow{\sim} \mathbb{C}[\mathbb{O}_{pr,\alpha}].$