
 Lecture 12

1 A factorial terminalizations

24 Cohomology vanishing

Refs KPH KP23 Sec6 in CM Sect in D BCHM 233

1 In Sec 3.2 ofLee 11 we have discussedpartial Poisson

resolutions of a conical symplectic singularity X We've stated
that there's a maximal suchpartial resolution Y In this
lecture we'll investigate thegeometry ofsuch Y Weill
see inparticular that Y is terminal A factorial
two kinds of singularities that are relevant for theMMP
minimalmodelprogram in Birational Geometry

11 Terminal varieties

We are only going to discussthis in the context of
symplectic singularities strictly speaking the following definition

is a result of Namikawa

A



Definition Let Y be asingularsymplecticvariety Wesay
Y is terminal if cedimy Ayres 4

Consider a special case let 0cg'tbe a nilpotentorbit
Assume O is normal This is true for all 10 if 9 31
KPD butmay fail for some Olfor other g and it's
mostly known when thishappens

Lemma TFAE

a X O is terminal
6 coding 10174

Proof

Step0 6 a is easy as Dexter In whatfellows
we prove O X'swhich yields a 6

Steph A closed subvariety Z in an affine Poisson variety
X is called Poisson if fg e I127 t feel x get 2
where I 2 is the ideal of Z We claim that 2 CAO
is Poisson Z is Gstable As we havearguedseveral

gtimes
eg intheproof ofLemma in Sec2.2 ofLec 7



the restriction map Stoy Clot Glx is Poisson

Also it's surjective So DEX is generatedbytheimage

of g Hence I Z is Poisson iff itis g stables Gstable

Step 2 New weprove that A Poisson subvariety E
End d This boils down to showing that a smooth
symplectic affine variety Y has no properPoissonsubvarieties

This is because fg riftg ulf is a
Hamiltonian vector

field associated to f Spantylfilfe A TyY tyet 5

Example Let g In let e be apartition ofn and let
O be the orbit w Jordan type t We write It let et
for the transpose of t e.g E ft att AI Then
dimdo n 1 I It.tt CM See 6.1 Further we have
A so iff t se in the standard dominanceorder

Igo sEet em Sec6.2 The followingclaim is a boring
Combinatorics exercise for I do 16 of Lemma ti time

0,9 H i For example for t As thisfails so I is not
terminal whilefor E Et it is



Remark While I may fail to be normal in types B C D
the conclusions of theprevious example still held mostly
thx to KPD includingthe combinatorial criterium of being
terminal in terms ofpartitions
For the exceptional types the situation is moresubtle

in a few cases one can have that coding010 2 but
codim MX's 4 X Spec E
One can also determine when ASpec Ali isterminal

12 A factorial varieties

Let X be a normalvariety To X we can assigntwo
abeliangroups First there's the Picardgroup Pic X whose

elements are isomorphism classes of linebundlesand the

multiplication comes fromthetensorproduct of line bundles
The 2ndgroup is PicNes identified w theclassgroupCelal

See Sec 6 of Chapter 2 in Hartshorne'sbook

Note that we have the restriction homomorphism Pic X
Pic Nes It's injective exercise

H



Definition We
say that X is A factorial if the

cokernel of the map Pick PieNes is torsion

Remark thestrongercondition that Pic x I Pickres is

equivalent to saying that X is locallyfactorial meaning
that Ox is factorial a k e AFD t xeX

We aregoing to analyze what A factorial means when

X Spec Ellis for equivariant covers Oof nilpotent orbits
We'll need the following constructionfromthe theoryof algebraic

groupactions See D Sect fordetails

Definition Let be a linebundle on a scheme X For an

algebraic groupaction HaX by an H linearization of L we
a lift of the H action to the total space ofL by fiberwise
linear automorphisms Thegroupof isomorphism classes of Hlinearizedline bundles on X is denotedby Pic X

gtheorem Let X be a normal variety a H a connected



algebraic group acting on X Assume H is factorial i.e
Ect is Then every line bundle is H linearizable

Examples 1 A torus Q is factorial

2 A ssimplegroup is factorial it's simplyconnected

This is proved using the Bruhat decomposition

Now we are ready to state a criteriumfor A factoriali

ty of A SpecCLO For an algebraicgroup H define its

charactergroup It H Hom HG where theHem is taken

in the category ofalgebraicgroups Note that 21111 H HH

Also if U is a unipetentnormal subgroup of H then
I A It Ha

Preposition Assume G is simply connected LetHeh bethe

stabilizer of a point in O Set X Spec do Then

Pic X a Pic x's s It H So X is A factorial

Delillo

I



Proof a Pic X a We have Q ax turning ELN into a

positively graded algebra Every line bundle on X is Q
linearizable i.e the corresponding module say M admits a

grading Let me Cx be the man idealof eel Note that
M MM s Q Using thegradedNakayama lemme wesee

that M isgeneratedby one element But M isprojective

so wemust have M GEX Thisfinishes theproof

Pic Nes If H Since cedimyvegNesta 2 and X
edis

smooth PicNes Pic HH We have theforgetfulhomomorphism
PichAtl PicHH It's surjective thx to Thm It's also

injective the trivial line bundle only hasone G linearization
thisfollows ble Glx E is a finitelygeneratedgroup so Gacts
on it trivially Ontheotherhand It G he so thesection 1

ofDan is Ginvariant So PichAti Pic a H

On the otherhand PichGlu to E H via L t fiberLa
The inversemap is givenby sending a t dimensional Hrep V

to the homogeneous line bundle Gx V

g
SoJEAN Pic HH Pic Atl This finishes theproof a



Exercise Let A cog be a nilpotent orbit X Spec Ela
Use results of lecture 6 computingZalehf to show that

If go31 then X is A factorial A isprincipal

If g Sean or span then X is A factorial
What happens for Sean

93 Main result
The following is a consequence of a muchmoregeneral
result of BEHM see Proposition 2.1 in 1233

Theorem Let X be a conical symplectic singularity For
a partial Poisson resolution Y X TFAE

a Y is maximal

6 Y is Oh factorial terminal a.k.a Y is a Qfactorial
terminalization ofX
Moreover Ysatisfying

these conditions always exists

Remark Y is often nonuniqueWemaydiscuss this in subsequ

agent
lectures



Exercise Prove a b if Y is smooth andhence is a

symplectic resolution

2 Cohomology vanishing

In this short section we sketch ofproofofthefollowing

Preposition Let X be a conicalsymplectic singularity
Y is itspartial Poisson resolution w cedimy 876
where Ysins Y Y Then fly's fly H lyreOy so
for is1,2
Proof Let it Y X C Yeses Y bethenaturelmorphisms

Steph Here weprove Rstay Ox Let p Z 7 be a

resolution ofsingularities Recall that Y is singularsymplecticSection 3.2 ofLeePt So is X Hence both X EY
have rational singularities Sec1.4 ofLec o
It follows that

RpOz Oy Rtt.pl Oz Ox

q
Since Rtop Rst Rp we deduce R Oy Ox



Step2 Similarly RGod I RiteRG By theHartegsThin

Oyreg O'y It remains to show thatRicgregd for is1,2
We have the endefuncter 8 LCoh yl LCohly thatsends

Fe Cohly to its subsheatof all localsections supported
on Y We have an exact sequence

a 8 I J c I

that is a SES on flabby sheaves compare to Exer2.3
in Ch 3 ofHartscherne'sbook we aredoing a localversion
of that So weget a distinguished triangle
RJOy Oy Ri Ogres

Since Oya d reg weget Risdyreg I R 8Oy

Step3 Since Y is singular symplectic it's CM see

Sect of Lee 9 It's known e.gExer3.4 in Ch 3 of
Hartshorne's book that R dO'y o if it is cedimysing

4 It follows that Ri Dyregso for is1,2 SinceX
is affine this implies H ly Oy so for is12 A

Tel


