Lecture 15

1) Properties of induced covers 2) Filtered deformations of C[Õ] Refs: [CM], Sec. 7.1; [[1].

1.0) Keminder & gools. We choose Levi & parabalic subgroups LCPCG, as well as an L-equivariant cover \widetilde{O}_{i} of a nilpotent orbit $Q_{i} \subset \mathcal{C}^{*}$ Set $X_{i} = Spec \mathbb{C}[\widetilde{Q}_{i}]$ and let $\mu: X_{i} \longrightarrow \widetilde{Q} \hookrightarrow \mathcal{C}^{*}be$ the natural map, it's a moment map. Set 2:= ([/[[,[]).* Consider the variety Yz:= C×P{(d,x) ∈ (g/h)*×X, [d]y-M(x) ∈ Z} Here P=LXU, h=Lie(U). A point in Z is a P-orbit of (h, d, x), h∈ G, under the action p. (h, d, x) = (hp⁻¹, p. d, sr(p)x). Here $\mathcal{T}: \mathcal{P} \longrightarrow \mathcal{L}.$ Note that $(q/k)^* \rightarrow \mathcal{L}^*, d \mapsto d_{\mathcal{V}}$, is \mathcal{P} -equivariant, so $\{(a,x)|a|y-M(x)\in z \in (\sigma/h)^* \times X$ is P-stable, so the action is well-defined. The variety 1/2 carries the following structures: · A morphism $Y_2 \rightarrow Z_2$, $[h, (a, x)] \mapsto d|_{Y} - \underline{\mu}(x)$. Let Y_2 be the fiber of SEZ.

· A Hamiltonian G-action Gro Z: g. [h, (a,x)] = [gh, (a,x)] w. moment map $M: Y_2 \rightarrow q^*: \mathcal{H}([h, (z, x)]) = hz.$

We have seen (Thm in Sec 2 of Lec 15) that each Y has an open G-orbit, O_{χ} , which is a G-equivariant cover of an orbit in of * whose semisimple part is in GX.

Definition: By the induced cover from (L, \widetilde{Q}, χ) we mean \widetilde{Q}_{χ} . The notation is $\operatorname{Ind}_{\mathcal{L}}^{\mathcal{G}}(\widetilde{\mathcal{O}}_{\mathcal{I}}, X)$ (if X=0, we drop it from notation).

Here's how we apply induced varieties/covers to study various questions about covers:

• We'll see that for each equivariant cover \tilde{O}^{1} of a coadjoint orbit in of \exists equivariant cover \tilde{O} of a nilpotent orbit s.t. $C[\tilde{O}^{1}]$ is a filtered Poisson deformation of $C[\tilde{O}]$. This will be done in this lecture

· We'll see that we can construct a Q-factorial terminalization of Spec CLÕJ (where O is an equivariant cover of a nilpotent orbit) as an induced variety. This will be

done in the next couple of lectures · Then we'll use induction to construct quantizations of $\mathbb{C}[\tilde{\mathcal{O}}]$.

1.1) Independence of P. Ind_L^G(\tilde{Q}_{i}, X) is independent of the choice of P, Lemma 4.1 in [[1]. That the underlying nilpotent orbit in σ_{j} is independent of P is proved in [[M], Section 7.1.

Example: Let G = SLn. Up to conjugation, parabolic subgroups are subgroups of block upper triangular matrices and so correspond to compositions n=n,+...+n, Let P be the convesponding parabolic & T be the corresponding partition: n:'s in the decreasing order. Take $Q_{2} = \{0\}$, so that $Y = T^{*}(C/P)$.

Exercise 1: Show that:

1) in $M = \overline{O}_{t}$, the closure of orbit w. Jordan type τ .^t Hint: use that dim im $M = \dim T^*(G/P)$ & check dim $T^*(G/P) = \dim \overline{O}_{t}$, Then for a Jordan matrix $J \in O_{t}$, find subspaces $(\Gamma^* \supset V_{t} \supset V_{t} \supseteq)$ $= V_k = \{0\}$ s.t. codim $V_i = n_{t+1} + n_i$ & $JV_i \subset V_{i+1}$; deduce $J \in im \mu$. 3

2) $Q = Q_{rt}$. Hint: use that the centralizers of nilpotent clements in PGL, are connected

1.2) Transitivity of induction. Take Levi subgroups $L < M \subset G$. So if $z \in organical organical conditions of the set o$

Lemma: The induction is transitive, e.g. for $\lambda \in (M/[M,M])^* (\subset ([l/[l,l])^*)$ we have $Ind, (\widetilde{Q}, \lambda) \longrightarrow Ind_{M}(Ind, (\widetilde{Q}, \lambda))$

Proof: Pick parabolic subgroups QCG w. Levi M so that Q=MXV & P'CM w Levi L so that P'= L × U. Then P= P'×U is a parabolic in G w. Levi L. For example, let $M = \begin{cases} \begin{pmatrix} * & * & * & 0 \\ * & * & * & 0 \\ (* & * & * & 0 \\ * & * & * & 0 \\ 0 & 0 & * \end{cases}$, $L = \begin{cases} \begin{pmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 &$

Let
$$Y' = \operatorname{Ind}_{P'}^{M}(X_{L}) = M \times P'\{(\beta, x) \in (M/R')^{*} \times X_{L}| \beta|_{L} = M(x)\}$$

Then $\operatorname{Ind}_{M}^{G}(\operatorname{Ind}_{L}^{M}(\widetilde{O}_{L}), X)$ is the open C -orbit in
 $(T^{*}(G/V) \times Y')/||_{1}^{M}$ (1)
Indeed, $\widetilde{O}_{AI} = \operatorname{Ind}_{L}^{M}(\widetilde{O}_{L})$ is the open M -orbit in Y . Then
 $(T^{*}(G/V) \times \widetilde{O}_{M})||_{1}^{M}M$ is an open C -stable subvariety of $\operatorname{Ind}_{Q}^{G}(X_{M'}, \lambda)$
 $R(1)$ so $\operatorname{Ind}_{M}^{G}(\widetilde{O}_{M}, \lambda)$ is the open C -orbit in (1).
A point in $M_{M'}^{-1}(-\lambda)/M$ is: $[q, 8, h, \beta, x]$ w. $q \in C, \ 8 \in (q/8)^{*}, h \in M, \beta \in (M/R')^{*}, x \in X, s.t. \ 8|_{R} = h\beta + \lambda, \beta|_{Y} = \mu(x), \text{ where we}$
identify $[q, 8, h, \beta, x]$ w. $[qv^{*}m^{-}, m8, mhu^{*+}C^{-}, l\beta, lx]$ w. $v \in V, m \in M, u' \in U', \ l \in L$. We can assume $h=1$ and then the
conjugation is by P -action $[q, 8, \beta, x] = [qu^{-1}C^{-}, l^{*}, l\beta, lx], u \in U, l \in L, while the condition becomes $\beta = 8|_{R} - \lambda \in 8|_{Y} = \mu(x) + \lambda;$
 $\beta, \lambda \in (M/R')^{*} \implies 8 \in (q/R)^{*}(-(q/2)^{*})$. An isomorphism of (1)
w. Y_{λ} is then given by $[q, 8, \beta, x] \mapsto [q, 8, x]$. It's C -equiva-
riant $(G acts on the 1st factor) \otimes (an isomorphism of covers. \Box
 $maps$ (both are given by q^{*}), $\&$ so is an isomorphism of covers. $\Box$$$

1.3) Non-nilpotent covers are induced. It turns out that every cover of a non-nilpotent orbit 5

is induced from a cover of a nilpotent one in a Levi. Let O' be a non-nilpotent orbit in $q^* \simeq q$ and $O' \xrightarrow{T} O'$ be a C-equivariant cover. Take $L := Z_{c}(\overline{z}_{s})$ for $\overline{z} \in O'$ & let Q_2 to be the nilpotent orbit in $l = G(z_s + Q_2)$, see Sec 1.3 in Lec 5. Set $Q_{:} = \pi^{-1}(\xi_{+}, Q_{-})$, this is an L-equivariant cover of Q, via $x \mapsto \underline{M}(x) := \pi(x) - \underline{F}_s$. Exercise: We have a natural iso $G \times \widetilde{O}_{2} \longrightarrow \widetilde{O}'$ (note that $G \times D_2 \longrightarrow D^1$, this follows from the argument in Sec 1.3, Lec 5). · We have a P-equivariant isomorphism $\left\{ \left(\frac{q}{h} \right)^* \times O_{\mathcal{L}} \mid d|_{\mathcal{L}} = f(x) + \xi_s \stackrel{\sim}{\to} P \times ^{\mathcal{L}} O_{\mathcal{L}} \right\}$ (compare to Case 1 in Sec 2.2 of Lec 14) yielding Ind, $(\widetilde{O}, \xi) \xrightarrow{\sim} \widetilde{O}$

2) Filtered determations of $\mathbb{C}[\tilde{O}]$ Fix L, \tilde{O}, w . Ind, $\tilde{O}(\tilde{O}_{L}) = \tilde{O}$. Fick a parabolic subgroup P W. P= LXU. PICK XEZ & set YCX = CX × Yz. Recall that CA Yz (Sec. 2.3 of Lec 14). It restricts to Yex: $f_{\cdot}\left(\left[h,(a,x)\right]\right) = \left[h,(f_{a},f_{\cdot}x)\right]$ Note that Y is C-stable. Since the C-& G-actions 6

on Y commute, the unique open C-orbit $\widetilde{O} \subset Y$ is C-stable.

Exercise 1: Show that $M_{c}: Y_{z} \rightarrow \sigma_{f}^{*}$ is $\mathbb{C}^{+}equivariant$, where C'ag* via t. d = t'd. Deduce that the C'action on O introduced above coincides with the one from Sec 1.2 of Lec 7.

In particular, $C[Y] = C[\overline{O}]$ is positively graded. Let z be the coordinate on CX w. z(X)=1. We can view z as a deg 2 homogeneous element in $\mathbb{C}[Y_{CX}]$ via pullback. Observe that Oy has no zero divisors 6/c Yax is irreducible.

Proposition: 1) We have $\mathbb{C}[Y_{CX}]/(z) \xrightarrow{\sim} \mathbb{C}[D]$ as isomorphism of graded Poisson algebras. 2) We have $\mathbb{C}[Y_{\mathbb{C}X}]/(z-1) \xrightarrow{\sim} \mathbb{C}[\widetilde{\mathcal{O}}_{X}]$, Poisson algebra iso.

Proof: 1) We have $C[Y] \xrightarrow{\sim} C[\widetilde{O}]$, graded Poisson algebra iso. We can view O, as a quotient of O, more precisely we have a SES: 0 -> 0, => 0, => 0, -> 0, -> 0 ~ long exact Seguence

 $o \to \mathbb{C}[Y_{CX}] \xrightarrow{2} \mathbb{C}[Y_{CX}] \to \mathbb{C}[Y] \to H'(\mathcal{O}_{Y_{CX}}) \xrightarrow{2} H'(\mathcal{O}_{Y_{CX}}) \to H'(\mathcal{O}_{Y_{CX}})$ It's enough to show that H'(Oy = 0. By Prop'n in Sec 2 of Lec 12, H'(Oy)=0. So $z H'(\mathcal{O}_{y_{rx}}) = H'(\mathcal{O}_{y_{rx}}).$ (1)On the other hand, H'(Oy) is a fin generated module over C[g*]. This is b/c Yax is projective over the affine of* (Exercise in Sec 2.1 of Lec 14), then we can use Theorem 5.2 in Sec 3 of Hartschorne). The Clog*]-action of H'(Oyrx) factors through $C[a]^*] \rightarrow C[Y_{CX}]$, so $H'(O_{Y_{CX}})$ is finitely generated over C[Y_{CX}] as well. Moreover, H'(Oy,) is a graded module: the action CAY gives rise to CAH (Oyr). It's retionel: $Y_{CX} \rightarrow C/P$ is a C^{*} invariant affine morphism, so Y_{CX} can be covered by C-stable open affines ~ C'A terms of Cech complex votionally. The algebra C[YCX] is 72- graded: deg Z=2 & CLYCX]/(Z) -> C[Y], which is The graded. So the grading on H'(Oyex) is bounded from below. And (1) \Rightarrow $H^{1}(O_{CX})=0$. This proves (1). 2): exercise (hint: write a similar exact sequence) 8

The to (2), the algebra $\mathbb{C}[Y_x] = \mathbb{C}[\widetilde{O}_x]$ inherits a filtration from the grading on C[Yex]. We leave it as an exercise to produce a graded Poisson isomorphism C[Y] ~> gr $\mathbb{C}[Y_{s}]$ (use 1) of Prop'n - and compare to Exercise in Sec 1.2 of Lec 3). So $(LY_{x}] = C[\widetilde{O}_{x}]$ becomes a fiftered Poisson deformation of CLOJ. The to Sec 1.3. we see that $\forall \tilde{O}'$ as in there, $C[\tilde{O}']$ has a filtration making it a filtered Poisson deformation for suitable C[Õ].