1) TDO, contd.
2) Quantum Hamiltonian reduction.

Ref: [G], Sec. 2.
1.0) Reminder

We are currently studying the questions of constructing \& classifying filtered quantizations. Last time we have constructed \& classified filtered quantization of $T^{*} Y_{0}$, where Y_{0} is a smooth variety: they are clessified by $H^{2}\left(Y_{0}, \Omega_{Y_{0}}^{\eta_{0}}\right)$. In fact, this answer fits the general pattern of classifying quantization of Poisson varieties that are smooth (or, more generally, singular symplectic \& terminal) w. some additional conditions.
11) DO's in line bundles.

Let Y_{0} be a smooth variety \& \mathcal{L} be a line bundle. We cover $Y_{0}=U_{i} Y_{0}^{i}$ by open affines sit $\mathcal{L} l_{y_{i}} \underset{\tilde{\varphi}_{i}}{\sim} O_{y_{0} i}$. This gives rise to a 1-colycle $f_{i j} \in \Gamma\left(y_{0}^{i j}, O^{x}\right)$ via $f_{j i}:=\varphi_{j} \varphi_{i}^{-1}(1)$. So we 1
get a 1-cocycle of 1 -forms $\alpha_{j i}:=-f_{j i}^{-1} d f_{j i}$, note that $\alpha_{\alpha_{i j}}=0$. So $\left(\beta_{i}=0, \alpha_{j i}\right)$ is a 2 -cocycle in the truncated Cech. De Ram complex (Sec 2.2 of Lec 18) and hence gives rise to a sheaf of $T D O$, to be denoted by D_{L}.

Proposition: D_{L} acts on \mathcal{L} extending the O_{y}-module structure. Proof/construction: recall that $\mathcal{D}_{\mathcal{L}}$ is constructed as follows. We have $\underset{\mathcal{L}}{ }\left(y_{0}^{i}\right) \underset{\Phi_{i}}{\sim} D\left(y_{0}^{i}\right) \leadsto \varphi_{j} \Phi_{i}^{-1}: D\left(y_{0}^{i j}\right) \rightarrow \mathcal{D}\left(y_{0}^{i j}\right), f \mapsto f$, $\xi \mapsto \xi-f_{j i}^{-1} \xi \cdot f_{j i}$. For open affine $U, \sigma^{\top} \in \Gamma(U, \mathcal{L}), \delta \in \mathcal{D}_{\alpha, \leq 1}(U)$, set $\varphi_{i}(\delta \sigma):=\Phi_{i}(\delta)\left(\varphi_{i}\left(\sigma^{\prime}\right) \in \mathbb{C}\left[U \cap Y_{0}^{i}\right]\right.$. We need to check this is well-Letined: $\varphi_{i}^{-1}\left(\varphi_{i}(\delta) \varphi_{i}\left(\sigma^{\prime}\right)\right)=\varphi_{j}^{-1}\left(\varphi_{j}(\delta) \varphi_{j}\left(\sigma^{\prime}\right)\right)$ [move φ_{j} to the l.h.s] $\Leftrightarrow\left[\varphi_{i}(\sigma)=: f \Rightarrow \varphi_{j}(\sigma)=f_{j i} f, \varphi_{i}(\delta)=: \xi+g \Rightarrow \phi_{j}(\delta)=\xi-f_{j i}^{-1} \xi \cdot f_{j i}+g\right]$ $f_{j i}(\xi \cdot f+g f)=\xi\left(f_{j i} f\right)+\left(g-f_{j i}^{-1} \xi \cdot f_{j i}\right) f_{j i} f-$ true equality. The $D_{\alpha, s 1}$-action extends to $D_{\mathcal{L}}$. Details ave left as an exercise. (hint: it's enough to check the relations on each Y_{i}^{0}).

Remarks: 1) As a sheaf of filtered algebras $D_{\mathcal{L}} \simeq \mathcal{L} \otimes D \otimes \mathcal{L}^{-1}$ (w. $\left.D_{\mathcal{L}, s i}=\mathcal{L} \otimes D_{s i} \otimes \mathcal{L}^{-1}\right)$
2) The class $\left(0, \alpha_{i j}\right) \in H^{2}\left(\Omega_{y}^{3}\right)$ is called the 1st Cher class
of L and is denoted by $C_{1}(\mathcal{L})$ (the usual "topological Chern class" is the image of this under $\left.H^{2}\left(\Omega_{y}^{\geqslant \prime}\right) \rightarrow H^{2}\left(\Omega_{y}\right)=H^{2}(Y, \mathbb{C})\right)$. Nate that $c_{1}: P_{1 c}(y) \rightarrow H^{2}\left(\Omega_{y}^{31}\right)$ is additive. For $\mathcal{C}_{k} \in P_{1 c}(y), k=1, \ldots$, , and $z_{i} \in \mathbb{C}$, it makes sense to speak about $\mathcal{D}_{\mathcal{L}_{1}^{z_{1}}, \mathcal{L}_{s}^{z_{s}}}$ - this is the sheaf of $T D O$ w. parameter $\sum_{i=1}^{s} z_{i} c_{1}\left(\mathcal{L}_{i}\right)-\sigma_{u} t \mathcal{L}_{1}^{z_{1}} \mathcal{L}_{s}^{z_{s}}$ is an actual line bundle of $z_{;} \in \mathbb{Z}$.
1.2) The case of $y_{0}=G / P$.

In this case $H^{2}\left(\Omega_{y_{0}}^{\geqslant 1}\right) \xrightarrow{\sim} H_{D R}^{2}\left(Y_{0}\right)$, see the last remark in Sec. 2.2 of Lec 18: G/P admits affine paving. In move detail, assume $P=P\left(\Pi_{0}\right)$ for $\Pi_{0} c \Pi$ (see $\operatorname{Sec} 2.1$ of Lec 13 for the notation). Let $W_{0} \subset W$ denote the subgroup generated by $s_{\alpha} w$. $\alpha \in \Pi_{0}$. We have the parabolic Schubert decomposition:

$$
G / P=\frac{11}{w} B \bar{w} P / P
$$

where B^{-}is the negative Bored and w runs over the elements in W that are of minimal length in wW. Each $B_{w}-P / P$ is an affine space. A basis in $H^{2}(G / P, \mathbb{Z})$ is indexed by codim 1 components; these are exactly $B_{S_{\alpha}} P / P$ for $\alpha \in \Pi \mid \Pi_{0}$. Moreover $\frac{C_{3}}{1}$ gives an isomorphism $\mathscr{X}(L) \simeq P_{1 C}(Y) \sim H^{2}(G / P, \mathbb{Z})$: the
fundamental weights ω_{α} corresponding to $\alpha \in \Pi_{\Pi_{0}}$ form a basis in $\mathscr{X}(L) \&{\sigma_{\alpha}}$ is sent to the basis element corresponding to $B \bar{S}_{\alpha} P / P$. Let \mathcal{L}_{α} denote the line bundle corresponding to ω_{α}. The conclusion of this discussion is that every sheaf of TDO on G/P has the form $\mathcal{D}_{\mathcal{L} z}$ for $z=\left(z_{\alpha}\right)_{\alpha \in \Pi \backslash \Pi_{0} \text { \& }}$ $\mathcal{L}^{z}=\bigotimes_{\alpha \in \Pi \mid \eta_{0}} \mathcal{L}_{\alpha}^{z_{\alpha}}$.
2) Quantum Hamiltonian reductions.
2.0) Motivation.

As explained in the previous lecture, our goal is to construct quantization of induced varieties $\operatorname{In} \alpha_{p}^{G}\left(X_{L}\right)$. If $X_{L}=\{0\}$, then $Y=\operatorname{Ind}_{p}^{a}\left(X_{L}\right)=T^{*}(G / p)$ \& the quantization are the sheaves of $T D O$, parameterized by $H^{2}(S / P, \mathbb{C}) \simeq(L /[K, L])^{*}$. In general, $\operatorname{In} \alpha_{p}^{G}\left(X_{L}\right)$ is obtained as (classical) Hamiltonian reduction. Our goal is to construct, for each $\lambda \in(L /[L, L])^{*}$, a filtered quantization \mathcal{D}_{λ} of Y (well define cavectully what this means later). To construct \mathcal{D}_{λ} well l use the quantum Hamilltonian reduction that well start to discuss now. 4
2.1) Quantum comment maps.

Let A be an associative unital algebra and H be an algeb. vaic group that acts on \nVdash rationally by automorphisms. By differentiation, this gives rise to a lie algebra homomorphism $\zeta \rightarrow \operatorname{Der}(\mathscr{H}), \xi \mapsto \xi_{S}$.

Definition: By a quantum comoment map for $H \curvearrowright$ st we mean an H-equivariant linear map $\phi: \zeta \rightarrow$ At s.t. $[\varphi(\xi), \cdot]=\xi_{A}$ $\forall \xi \in \zeta$ (note that Φ is a Lie algebra homomorphism, exerase).

Example 1: Let $\mathscr{N}=U(\xi)$ equipped with the usual H-action. The natural inclusion $J \hookrightarrow U(\xi)$ is a quantum comment map.

Example 2: Let y_{0} be a smooth affine variety w. an H-action. Tare $\mathscr{A}=D\left(Y_{0}\right)$ and equip it with the induced H-action. For $\xi \in \xi$, set $P(\xi)=\xi y_{0}$ so that $\Phi: \zeta \rightarrow D\left(y_{0}\right)$ is linear \& H-equivariant. So, $f \in \mathbb{C}\left[y_{0}\right], \eta \in \operatorname{Vect}\left(y_{0}\right)$, we have $[P(\xi), f]=$ $\xi_{y_{0}} \cdot f=\xi_{D\left(y_{0}\right)} f,[P(\xi), \eta]=\left[\xi_{y_{0}}, \eta\right]=\xi_{D\left(y_{0}\right)} \cdot \eta$. It follows that $P_{1 s}$ a quantum comment map.

Now assume that \mathcal{A} is equipped w. an algebra filtration, $\mathscr{A}=\bigcup_{i \geqslant 0} \mathbb{H}_{\leqslant i}$ preserved by H. Assume further that $\operatorname{deg}[;] \leqslant-\alpha$ for $\alpha \in \mathbb{Z}_{\geqslant 0}$ (i.e. $\left[\mathbb{H}_{s i}, \mathbb{H}_{s j}\right] \subset \mathbb{H}_{s i+j-\alpha}$). Finally, assume that a quantum comment map P has image in $\mathbb{N}_{s \alpha}$. Let $A=$ gr St.

Exercise: The action $H \curvearrowright A$ is Hamiltonian w. comoment map $\varphi:=P+\mathbb{X}_{\leq d-1}: \zeta \rightarrow \mathcal{A}_{\alpha}$ is a classical comment map.

Applying this to the previous two examples we recover the comment maps from Sec 2.2 of Lee 2.

Rem: As for the classical comoment maps, if $\lambda \in\left(\zeta^{*}\right)^{H}$ \& P is a quantum comment map, then $\varphi+\lambda$ is also a quantum comoment map.
2.2) Quantum Hamiltonian reduction.

Let $A, H, Q P$ be as in $\operatorname{Sec} 2.1$. The left ideal $\mathscr{P P}(\xi) \subset \mathbb{A}$ is H-stable so we can talk about $[\mathcal{H} / \mathscr{H} \varphi(\xi)]^{H} \subset \mathscr{H} / \mathscr{H} \Phi(\xi)$ Note that $a+\mathscr{H P}(\xi) \in[\mathscr{H} / \mathbb{H P}(\xi)]^{H}$ is also 5 -invariant 6
$\Leftrightarrow \xi_{A} a=[\varphi(\xi), a] \in \mathscr{H} \varphi(\xi)$. Using this we get:

Lemme: There's a unique algebra structure on $[\mathcal{A} / A P(\xi)]^{H}$ s.t. $(a+\mathscr{H} P(\xi)) \cdot(6+\mathscr{M} \Phi(\xi))=a b+\mathbb{A} P(\xi)$.

We denote the resulting algebra by $T_{1 / I I} H$.

Exerase: Assume H is connected. Construct an isomorphism $\mathscr{N} / / \|_{0} H \xrightarrow{\sim}$ End $_{g R}(\mathcal{H} / A \operatorname{AP}(\xi))^{\text {opp }}$.

Rem: Fix P. Then we have a family of algebras $\mathscr{H}\|/\|_{\lambda} H:=\left(\mathscr{H} / \mathscr{H}\{\xi-<\lambda, \xi>\mid \xi \in\}^{H}\right.$.
2.3) Quantization commutes w. reduction

Now assume that \mathscr{H} is filtered $w . \operatorname{deg}[; \cdot] \leqslant-\alpha \&$ in $\varphi \subset \mathbb{H}_{s d}$. Set $A:=\operatorname{gr} A, \varphi:=\varphi+\mathscr{M}_{\leqslant \alpha-1}: g \rightarrow A_{\alpha}$. The quotient $\mathcal{H} / \mathscr{H} \mathscr{P}(\xi)$ inherits a filtration from $\mathscr{I N}$, and it's preserved by H, so $(\mathscr{H} / A P(\xi))^{H}$ is a filtered algebra w. $\operatorname{deg}[; \cdot] \leqslant-d$. One can ask for conditions that guarantee
that $(\mathscr{H} / A \Phi(\xi))^{H}$ is a filtered quantization of the classical Hamiltonian reduction $(A / A \varphi(\xi))^{H}$. We assume that A is finitely generated.

First, note that $A \varphi(\xi) \subset \operatorname{gr}[A \Phi(\xi)]$.

Lemma 1: Suppose that for a basis $\xi_{1}, \ldots \xi_{n} \in \zeta$, the sequence $\varphi\left(\xi_{1}\right), \ldots, \varphi\left(\xi_{r}\right) \in A$ is regular. Then $A \varphi(\xi)=\operatorname{gr}[\mathcal{A} P(\xi)]$.

Proof: This is a special case of Claim in Sec 1 of Lec 11: condition (b) there follows $b / c \Phi(\xi) \subset A$ is Lie subalgebra. D

Second, taking H-invariants is left exact land exact iff H is reductive) so $\operatorname{gr}\left[(\mathcal{H} / A P P(\xi))^{H}\right] \hookrightarrow[A / A \varphi(\xi)]^{H}$ (an isomorphism when H is reductive).

We will need a special situation (for general H). Let $X:=\operatorname{Spec} A \& \mu: X \rightarrow J^{*}$ be the moment map (dual to φ).

Lemme: Suppose that H acts on $\mu^{-1}(0)$ freely \& \exists affine Y s.t. $\mu^{-1}(0) \rightarrow Y$ is a principal H-bundle. Then

$$
\operatorname{gr}\left[(\notin / A \infty(\xi))^{H}\right] \sim[A / A \varphi(\xi)]^{H}=\mathbb{C}[y] .
$$

Sketch of proof: Since $H \Omega \mu^{-1}(0)$ freely, we have that the vector fields $\xi_{1, x}, \ldots \xi_{n, x}$ are linearly independent at all points of $x \in \mu^{-1}(0) \Leftrightarrow d_{x} \varphi\left(\xi_{1}\right), \ldots d_{x} \varphi\left(\xi_{n}\right)$ are linearly independent \& $x \in \mu^{-1}(0)$, in particular, $\varphi\left(\xi_{1}\right), \ldots, \varphi\left(\xi_{n}\right)$ form a regular sequence.

Hence for $B=\operatorname{TK} / \mathscr{T} \Phi(\xi)$ \& $B=A / A \varphi(\zeta)$ we have $\operatorname{gr} \beta \simeq B$. Now we need to show that $\operatorname{gr}\left(\beta^{H}\right) \leadsto B^{H} \Leftrightarrow$ $\forall i$ we have SES $0 \rightarrow \beta_{s i-1}^{H} \rightarrow \beta_{s i}^{H} \rightarrow B_{i}^{H} \rightarrow 0$.

This will follow if we check that B is injective in the category of rational H-representations (then B_{i} is injective as a direct summand of an injective representation). We won't give a proof here-we'll leave it for a separate note.

