MATH 720, Lecture 2.

1) Poisson manifolds & Classical Mechanics.
2) Hamiltonian actions & moment maps.

Refs: [CdS], Secs 12,18,21,22; [CG], 1.1,12,14.

In this lecture we continue to review symplectic & Poisson manifolds. We also touch on the symmetry in Classical Mechanics: Hamiltonian actions of Lie groups.

1.1) Examples of Poisson manifolds.

1) Let V be a vector space and $P \in \Lambda^2 V (= \Gamma(\Lambda^2 T_V))$. The bracket $\{ ; \}_P$ on $C^\infty(V)$ can be described as follows.

Pick a basis $x_1, \ldots, x_n \in V^*$ and let $p_{ij} = P(x_i, x_j)$. Then

$$\{f, g\}_P = \sum_{i,j=1}^n p_{ij} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}.$$ The bracket is Poisson: it's enough to check the Jacobi identity on x_1, \ldots, x_n since they functionally generate $C^\infty(V)$, and there it's straightforward. The Poisson bivector is non-degenerate $\Leftrightarrow P$ is, i.e. V is a symplectic vector space.
2) Let M_0 be a manifold. Set $M := T^*M_0$. This is a symplectic manifold. We won’t need a formula for the symplectic form, see [CdS], Sec 2, [CG], Sec 1.1 But we’ll need the formulas for brackets of some elements of $C^\infty(M)$. Note that $C^\infty(M_0)$ (resp., $\text{Vect}(M_0) := \Gamma(TM_0)$) embed into $C^\infty(M)$ as the subsets of functions that are constant (resp. linear) on fibers of $T^*M_0 \to M_0$. Then we have:

\[\{f, g\} = 0, \quad \{\xi_1, \xi_2\} = \xi_1 \cdot h, \quad \{\xi_1, \xi_2\} = [\xi_1, \xi_2] \quad (1) \]

\[f, g \in C^\infty(M_0), \quad \xi_1, \xi_2 \in \text{Vect}(M_0). \]

Note that (1) uniquely determines the bracket. Note also that if M_0 is a vector space, then the symplectic form on $M = M_0 \oplus M_0^*$ arises in the previous example.

3) Let \mathfrak{g} be a finite dimensional Lie algebra. Then \mathfrak{g}^* carries the unique Poisson structure s.t. for $x, y \in \mathfrak{g}$ (viewed as linear functions on \mathfrak{g}^*) we have $\{x, y\} = [[x, y]]$. The Poisson bivector P can be described as follows: for $x, y \in T_x^*\mathfrak{g} \cong \mathfrak{g}$ have $\langle P, (x^\flat, y^\flat) \rangle = \langle \alpha, [x, y] \rangle$. To check the
Note that this Poisson structure is degenerate: $P_0 = 0$.

Rem: We have worked w. real manifolds & C^∞-functions. But the definitions & constructions carry over to the complex analytic & algebraic settings essentially verbatim. For example, let X_0 be a smooth and, for simplicity, affine variety over \mathbb{C}. Then its tangent bundle $X = T^* X_0$ is defined as $\text{Spec} (S_{\mathbb{C}[X_0]} (\text{Vect } X_0))$ and (1) extends to a Poisson bracket on $S_{\mathbb{C}[X_0]} (\text{Vect}(X_0))$. If X_0 is not affine, we define the Poisson structure on $T^* X_0^i$ for open affine cover $X_0 = U X_0^i$. These Poisson structures glue to a Poisson structure on $\mathcal{O}_{T^* X_0}$. The variety $T^* X_0$ is symplectic.

1.2) **Classical mechanics**

Space of states: a Poisson manifold/varietiy M

Observables: Functions (C^∞/analytic/algebraic) on M

Hamiltonian: One of the observables, H.

Evolution equation: Hamilton equation $\dot{f}(t) = \{H, f(t)\}$.

Details is an exercise.
And the right notion of symmetry will be explained in the next section.

2) Hamiltonian actions & moment maps.

2.1) Definitions.

Let G be a Lie group acting on a manifold M. This gives rise to a G-equivariant Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{g}_M : g \mapsto \text{Vect}(M)$ (if $\gamma(t)$ is a curve in G w/ $\gamma(0) = e$, $\frac{d}{dt} \gamma(0) = \mathfrak{g}$, then, for $m \in M$, \mathfrak{g}_M is the tangent vector to $\gamma(t)m$).

Now assume M is Poisson and G preserves \mathfrak{g}. For $f \in C^\infty(M)$, $\mathfrak{g} \cdot f : C^\infty(M) \to C^\infty(M)$ is a derivation, we write $\mathfrak{g}\mathfrak{g}(f)$ when we view it as a vector field. The map $f \mapsto \mathfrak{g}\mathfrak{g}(f)$ is also a G-equivariant Lie algebra homomorphism.

Definition: A (classical) comoment map is a G-equivariant linear map $\mathfrak{g} \mapsto H_\mathfrak{g} : \mathfrak{g} \to C^\infty(M)$ s.t. the following diagram commutes

\[
\begin{array}{ccc}
\mathfrak{g} & \xrightarrow{\mathfrak{g} \mapsto \mathfrak{g}_M} & \text{Vect}(M) \\
\uparrow H_\mathfrak{g} \quad & & \quad \uparrow f \mapsto \mathfrak{g}\mathfrak{g}(f) \\
\mathfrak{g} & \quad \xrightarrow{\mathfrak{g} \mapsto H_\mathfrak{g}} & \quad C^\infty(M)
\end{array}
\]

Equivalently, $\mathfrak{g}_M = \mathfrak{g}(H_\mathfrak{g}) = \langle \mathfrak{p}, \text{d}H_\mathfrak{g} \rangle \forall \mathfrak{g} \in \mathfrak{g}$.

4
Exercise: \(\xi \mapsto H_\xi \) is a Lie algebra homomorphism.

- By a Hamiltonian \(G \)-action we mean a \(G \)-action on \(M \) preserving \(\{ ; \} \) together w. a classical comoment map.
- The moment map \(\mu \) for a Hamiltonian \(G \)-action on \(M \) is the map \(\mu: M \to \mathfrak{g}^* \) given by
 \[
 \langle \mu(m), \xi \rangle := H_\xi(m), \ m \in M, \ \xi \in \mathfrak{g}.
 \]
- The symmetry of a classical Hamiltonian system on \(M \) with Hamiltonian \(H \) is a Hamiltonian \(G \)-action on \(M \) preserving \(H \).

2.2) Examples

The verification of the conditions is left as an exercise (or look at the refs).

1) Consider the coadjoint action of \(G \) on \(\mathfrak{g}^* \). It’s Hamiltonian w. comoment map sending \(\xi \in \mathfrak{g} \) to \(\xi \) viewed as a linear function on \(\mathfrak{g}^* \). The moment map is the identity.

2) Let \(G \) act on a manifold \(M_0 \). The induced action on \(M = T^*M_0 \) is Hamiltonian w. \(H_\xi := \xi_{|M_0} \).
3) Let V be a symplectic vector space with form ω and G be a Lie group acting on V via a homomorphism $C \rightarrow Sp(V)$ (so that $g \in Sp(V)$). This action is Hamiltonian with comoment map $H_g(v) = \frac{1}{2} \omega(gv,v)$ (this exercise is on computing differentials of quadratic functions).

Remark: Let's explain the relevance of the comoment map for Classical Mechanics. Suppose $H \in C^\infty(M)^G$ (G-invariant). Then $\{H_g, H^2\} = \delta_H H = 0$. The Hamilton equation gives

$$\dot{H}_g(t) = \{H, H_g^2\} = 0$$

so H_g is constant on the trajectories of the system and hence is a conserved quantity (this is the Noether principle: conserved quantities correspond to continuous symmetries).

2.3) Coadjoint orbits as symplectic manifolds.

Let G be a connected Lie group, $\mathfrak{g} = \text{Lie}(G)$. We consider the coadjoint representation $G \rightarrow \text{adj}(\mathfrak{g}^*)$ and hence can talk about coadjoint orbits. Turns out they are symplectic manifolds that essentially exhaust all transitive Hamiltonian actions.
In this section we will equip any coadjoint G-orbit G_{α} (where G_{α} is an immersed submanifold & $T(G_{\alpha}) = g_{\ast}$ under the coadjoint rep) with a G-invariant symplectic form ω such that the embedding $G_{\alpha} \hookrightarrow g^{\ast}$ is a moment map.

Recall (Sec 2.2 of Lee 2) that for the Poisson bivector \mathcal{P} on g^{\ast} we have $\left< \mathcal{P}_\beta, \xi \wedge \eta \right> = \left< \beta, [\xi, \eta] \right>$. Note that $G_{\alpha} \subset g^{\ast}$ is an immersed submanifold of \mathcal{P}.

Set $g_{\beta} = \{ \xi \in g^{\ast} \mid \beta, [\xi, \eta] = 0 \forall \eta \in g^{\ast} \} = \ker[\mathcal{P} \rightarrow g_{\beta}, \xi \mapsto \xi \beta]$. The following important exercise gives a construction of a symplectic form on G_{α} known as the Kirillov-Kostant form to be denoted by ω_{KK}.

Exercise: (i) $\left< \mathcal{P}_\beta, \xi \wedge \eta \right> = 0 \forall \eta \in g_{\beta} \iff \xi \in g_{\beta}$. Deduce that \mathcal{P} descends to a symplectic form ω_{KK} on $g_{\beta} / g_{\beta} \cong T_{\beta}(G_{\alpha})$.

(ii) Justify that the form ω_{KK} on G_{α} whose value at $\beta \in G_{\alpha}$ is ω_{KK} is C^{∞}. Show that ω_{KK} is G-invariant.

(iii) The form ω_{KK} is closed and hence symplectic (hint: ω_{KK} satisfies $\xi_{M} \cdot \omega_{\text{KK}} = 0$ (G-invariance) & $\omega_{\text{KK}, \beta} (\xi_{M} \beta, \xi_{M} \beta) = \left< \beta, [\xi, \xi] \right>$. One can then check ω_{KK} is closed by using the "Cartan magic formula").
(iv) The inclusion $G_{\mathbb{C}} \hookrightarrow \mathfrak{g}^*$ is a moment map for $G_{\mathbb{C}} \times \mathfrak{g}$.

Example: $G = U(n)$ (so $\mathfrak{g} \cong \mathfrak{g}^*$ via $(x,y) = -\text{tr}(xy)$), $d = \text{diag}(i,0,0) \Rightarrow G_{\mathbb{C}} \cong \mathbb{C}P^{n-1}$ & w_{FS} is the Fubini-Study form. More generally, we can equip generalized (a.k.a. parabolic) flag varieties for complex s/simple Lie groups, $G_{\mathbb{C}}$, w. (real) symplectic forms that are parts of Kähler structures (take the compact form G of $G_{\mathbb{C}}$ & appropriate $d \in \mathfrak{g}^*$).