Lecture 20.

1) TDO's vs Quantum Hamiltonian reduction.
2) Quantizations of induced varieties.
1.0) Introduction: In this section well l give an example of computation of Quantum Hamiltonian reduction. Consider the following situation. Let $Y_{0}$ be a smooth variety, $H$ be an algebraic group and $\tilde{Y}_{0}$ is a principal $H$-bundle on $Y_{0}$. Then $H$ acts on $T^{*} \tilde{Y}_{0}$ and also on the sheaf $D_{\tilde{Y}_{0}}$. Both actions are Hamiltonian w. clessical/quantum comoment map $\xi \mapsto \xi_{\tilde{F}_{i}}: 5$ $\rightarrow \operatorname{Vect}\left(\tilde{Y}_{0}\right)$ (note that we haven't discussed quantum Hamiltonian actions on sheaves. The claim of Example 2 in Sec 2.1 of Lec 19 is still true. In our case it reduces to the affine case $6 / c$ the morphism $\tilde{Y}_{0} \rightarrow Y_{0}$ is affine (so $U \subset Y_{0}$ affine $\Rightarrow$ so is $\pi^{-1}(U)$ ). The following proposition generalizes Example 1 in Sec 1.2 of Lee 13 (that deals w. $Y_{0}=G\left(H, \tilde{Y}_{0}=G\right)$. Weill comment on a proof later.

Proposition: There's a natural symplectomorphism $T^{*} \tilde{Y}_{0} \|_{0} H \leadsto T^{*} Y_{0}$. Moreover, $\mu^{-1}(0) \rightarrow T^{*} y_{0}$ is a principal $H$-bundle.

Define a $q$-cohit sheet $D_{\tilde{Y}_{0}} / I / \lambda$ on $Y_{0}$ as follows: for $U \subset \%_{0}$ open affine set $\mathcal{D}_{\tilde{\varphi}_{0}} / /\left\|_{\lambda} H(u):=D\left(\pi^{-1}(U)\right) / / /\right\|_{\lambda} H$ \& for inclusion $V \subset U$, the restriction $\operatorname{map} D_{\tilde{y}_{0}} / / \|_{\lambda} H(U) \rightarrow D_{\tilde{Y}_{e}} / I / \lambda H(V)$ is induced by the restriction map $D_{\tilde{y}_{0}}\left(\pi^{-1}(U)\right) \rightarrow D_{\tilde{y}_{0}}\left(\pi^{-1}(V)\right)$.

Lemma in Sec 2.3 of Lee 19 applies and so $\forall \lambda \in\left(5^{*}\right)^{H}$, $D_{\tilde{y}_{0}} \| / \lambda_{\lambda} H$ is a filtered quantization of $T^{*} \tilde{y}_{0} \|_{0} H=T^{*} y_{0}$, hence a sheet of TDO. We want to identify this sheaf of TDO for $\lambda \in \mathscr{X}(H) \otimes_{\mathbb{Z}} \mathbb{C}\left(c \zeta^{* H}\right.$ via $\left.\alpha_{1}: \mathscr{X}(H) \rightarrow\left(\zeta^{*}\right)^{H}\right)$. Write $\lambda=$ $z_{1} X_{1}+\ldots+z_{k} X_{k}$. Then $X_{l}$ gives a line bundle on $Y_{0}, \mathcal{L}_{X_{e}}$, whose

$H$ acts via $X_{e}$
Theorem: We have an isomorphism of filtered quantizations

$$
D_{\tilde{y}_{0}} \| / l_{\lambda} H \xrightarrow{\sim} D_{y_{0}}^{\lambda} .
$$

We wont need the theorem, so well only prove it in the special case $\lambda=0$.
1.1) Vector fields on $Y_{0}$ vs $\tilde{Y}_{0}$.

Let $\pi: \tilde{y}_{0} \rightarrow Y_{0}$ be the natural morphism. Then $\theta_{y_{0}} \leadsto\left(\pi_{*} \theta_{\tilde{y}_{0}}\right)^{H}$. We write $V_{y_{0}}, V_{\tilde{r}_{0}}$ for the sheaves of vector fields. We want to describe the former in terms of the latter, similarly to the description of functions above. Set $\zeta_{\tilde{r}_{0}}:=\left\{\tilde{\xi}_{\tilde{F}_{0}} \mid \xi \in \zeta\right\} \subset V\left(\tilde{Y}_{0}\right) \sim$ subsheat $O_{\tilde{Y}_{0}}{\zeta_{\tilde{Y}}} \subset V_{\tilde{Y}_{0}}$, these ave exactly the vector fields tangent to the fibers of $\pi$. Note that for $U \subset Y_{0}$ (open affine), elements from $Q_{\tilde{y_{0}}} \tilde{j}_{\tilde{r}_{0}}\left(\pi^{-1}(u)\right)$ annihilate $\mathbb{C}\left[\pi^{-1}(u)\right]^{-1}=\mathbb{C}[u]$ (b/c $\bar{\xi} \tilde{\%}_{0}$ do). So, for $\zeta \in V_{\tilde{\%}_{0}}\left(\pi^{-1}(u)\right) / O_{\%_{0}} \zeta_{\tilde{r}_{0}}\left(\pi^{-1}(U)\right)$, the differentiation $J: \mathbb{C}[u] \rightarrow \mathbb{C}\left[\pi^{-1}(u)\right]$ is well-defined. And $H$ naturally acts on the quotient. For $H$-invariant $S$, we have $J(\mathbb{C}[u]) c$ $\mathbb{C}[u]$. And $\overline{\mathfrak{C}}[u] \rightarrow \mathbb{C}[u]$ is a derivation (exercise). This gives rise to an $\theta_{y_{0}}$-linear map

$$
\begin{equation*}
R_{y_{0}}: \pi_{*}\left(V_{\tilde{y}_{0}} / O_{\tilde{y}_{0}} \zeta_{\tilde{y}_{0}}\right)^{H} \longrightarrow V_{y_{0}},\left.J \mapsto J\right|_{\theta_{\%_{0}}} \tag{1}
\end{equation*}
$$

Lemma: (1) is an isomorphism.

Sketch of proof: This is easy when $\tilde{Y}_{0} \leadsto H \times Y_{0}$ : here $\pi_{*} V_{\tilde{y}_{0}} \simeq V_{y_{0}} \otimes_{\mathbb{C}} \mathbb{C}[H] \oplus Q_{y_{0}} \otimes_{\mathbb{C}} V_{H}(H)$. In general, it's enough to check
(1) on an open (Zariski/etale) cover, where $\pi$ trivializes. The case when $\tilde{y}_{0} \rightarrow \%_{0}$ is Zariski locally trivial is easy, this is the case in our applications, where $\tilde{Y}_{0} \rightarrow Y$ is $G \rightarrow G / P$ or $\zeta \rightarrow G / U$. In general, let $\varphi: Z \rightarrow \%$ be an etale cover s.t. $Z \times x_{0} \tilde{y}_{0} \rightarrow Z \times H$. Then one checks that:

$$
V_{z} \xrightarrow{\sim} \varphi^{*} V_{y_{0}},\left(V_{z \times H} / O_{z \times H} \zeta_{z \times H}\right)^{H} \xrightarrow{\sim} \varphi^{*}\left(V_{\tilde{\varphi}} / O_{\tilde{y_{0}}} \tilde{j}_{\tilde{y_{0}}}\right)^{H} \&
$$

$R_{z}=\varphi^{*} R_{y_{0}}$. Then we use that $\varphi^{*}$ is faithful \& exact so if $R_{z}$ is an isomorphism, then so is $R_{\%}$. Details are exercise.

Now note that the Lie bracket on $V_{y}$ gives rise to a well-detined bracket on the l.h.s. of (1). Then (1) is an isom'm of Lie algebras. Details are also left as an exercise.
1.2) Theorem for $\lambda=0$

We now prove the theorem in the case when $\lambda=0$. Our goal is to construct a $O_{\%_{0}}$-linear sheaf of algebras homomorphism
$D_{y_{0}} \longrightarrow D_{\tilde{y}_{0}}|/| H$, which turns out to be an isomorphism. Recall that $D_{Y_{0}}$ is generated by $Q_{Y_{0}}, V_{y_{0}}$. So well first construct $\theta_{y_{0}}$-linear maps $\theta_{y_{\%}}, V_{y_{0}} \rightarrow D_{\tilde{y}_{0}} / I / H$. 4

Consider open affine $U \subset Y_{0}$. Consider the composition

$$
\mathbb{C}[u] \hookrightarrow \mathbb{C}\left[\pi^{-1}(u)\right] \hookrightarrow D\left(\pi^{-1}(u)\right) \rightarrow D\left(\pi^{-1}(u)\right) / D\left(\pi^{-1}(u)\right) \zeta \tilde{y_{0}} .
$$

It's $H$-equivariant so the image is in $D / I I H(U)$. This gives rise to the desired map ${\theta_{\%_{0}}} \rightarrow D_{\tilde{\%}_{0}} / I / H$.

Similarly, we have the map $V_{\tilde{\zeta}_{0}}\left(\pi^{-1}(u)\right) \rightarrow D\left(\pi^{-1}(u)\right) / D\left(\pi^{-1}(u)\right) \tilde{\zeta}_{\tilde{\%}_{0}}$. It vanishes on $\mathbb{C}\left[\pi^{-1}(U)\right] \tilde{y}_{\tilde{r}_{0}}$ and is $H$-equivariant. Using (1), we get the desired map $V_{y_{0}} \rightarrow \mathcal{D}_{\tilde{y}_{0}} / I /{ }_{0} H$.

Exerase: This is a Lie algebra homomorphism.

Now that we've constructed maps $\theta_{y_{0}}, V_{y_{0}} \rightarrow D_{\overline{\%}_{0}}$ III $H$ we need to check that they satisfy the relations of $D_{\%}$ That the sections of $\theta_{Y_{0}}$ multiply as in $\theta_{Y_{0}}$ is straightforward That $[c(\xi),(l f)]=L(\xi \cdot f)$ follows from the construction of (1). And $[(\xi), L(\eta)]=L([\xi, \eta])$ follows from the previous exercise.

So we get an $\theta_{y_{0}}$-linear algebra homomorphism

$$
\begin{equation*}
D_{Y_{0}} \longrightarrow D_{\tilde{y}_{0}} \| /{ }_{0} H . \tag{2}
\end{equation*}
$$

A check that it's an isomorphism we follow the same idea as in the proof of Lemma in the previous section.

- Case 1: $\tilde{Y}_{a}=y_{0} \times H$. Then $\pi_{*} D_{\tilde{y}_{0}} \simeq D_{y_{0}} \otimes_{\mathbb{C}} D(H)$,
$\pi_{*}\left(D_{\tilde{y}_{0}} / D_{\tilde{\zeta}_{0}} \delta_{\tilde{\zeta}_{0}}\right) \simeq D_{\zeta_{0}} \otimes D(H) / D(H) \xi_{H} \&$ $D_{\tilde{y}_{0}\|/\|} H \simeq D_{y} \underset{\mathbb{C}}{\otimes} \underbrace{D(H) / \| H_{0}}_{\text {quant'n of } p t=\mathbb{C}} \simeq D_{y_{0}}$, w. (2) being the inverse of the resulting identification.
- Case 2: general - we argue as in the proof of Lemme in Sec 1.1

Rem: Proposition in Sec 1.0 can be proved along the same lines.
2) Quantization of induced varieties.

Recall that the induced variety $\operatorname{Ind} \alpha_{p}^{G}\left(X_{L}\right)$ (w. $\left.X_{L}=\operatorname{Spec} \mathbb{C}\left[\tilde{0}_{L}\right]\right)$ is obtained as follows. Let $P=\angle 凶 U$ be a Levi decomposition. We consider the action of $L$ on $G / U: l .(g U)=\left(g l^{-1}, u\right)$, then induced action on $T^{*}(G / u)$ and the diagonal action on $T^{*}(G / U) \times X_{L}$. It's Hamiltonian w. moment map $\mu_{L}:([g, \alpha], x) \mapsto$ $-\left.\alpha\right|_{L}+\mu(x)$, where $\mu: X_{L} \rightarrow L^{*}$ is the moment map. Then $Y=\operatorname{In} \alpha_{p}^{G}\left(X_{L}\right):=\mu_{L}^{-1}(0) / L=C_{1} x^{P}\left\{(\alpha, x)|\alpha|_{L}=\mu(x)\right\}$.

Note that we have the projection $y \xrightarrow{\pi} G / P$ and the fiberwise $\mathbb{C}^{x}$-action: $t .[g,(\alpha, x)]=\left[g,\left(t^{2}, t . x\right)\right]$. The morphism $\pi$ is 6
affine $\sim$ we can replace $Y$ w. the sheaf $\pi_{*} Q_{y}$ of graded Poisson algebras $w . \operatorname{deg}\{; ;\}=-2$. And we can talk about its filtered quantization just as in $\operatorname{Sec} 2$ of Lee 18 in the case of $T^{*} y_{0}$. Our goal is: for $\lambda \in(L /[L, K])^{*}$ construct a quantzation $D_{\lambda}$ of $\mathbb{T}_{*} O_{y}$.

Weill use quantum Hamiltonian reduction. For this, we need to start $w$. a quantization of $T^{*}(C / u) \times X_{L}$ to be reduced.

The first factor is quantized by $D_{c l u}$. Assume from now on that $X_{L}$ is $\mathbb{Q}$-factorial \& terminal. Here's a fact whose proof we may give at some point later.

Fact: $\mathbb{C}\left[X_{L}\right]$ has a unique filtered quantization. Denote it by $\pi_{2}$

So consider $D_{G l u} \otimes A_{L}$ viewed as a sheaf of filtered algebras on G/U. We are going to equip it w. e Hamiltonian $L$-action lifting that on $s_{*} O_{y}$. The group $L$ acts on $\mathscr{D}_{\text {lu }} w$. quantum comoment map $\xi \mapsto \xi$ flu. Now we need to establish a Hamiltonian action of $\angle$ on $\mathscr{A}_{L}$. It's existence follows from:

Proposition: Let $A$ be a positively graded Poisson algebra $w . \operatorname{deg}\{;\}=-d$. Let $H$ be a ssimple group $w$. Hamiltonian action on $A \&$ comment map $\varphi: \zeta \rightarrow A_{\alpha}$. Let $\mathscr{H}$ be a filtered quantization of $A$. Then $\angle \Omega \mathscr{H}$ lifts to a Hamiltonian action w. quantum comoment map $\phi: \zeta \rightarrow \mathscr{H}_{\leqslant \alpha} w . \quad \varphi+\mathscr{N}_{\leqslant \alpha-1}=\varphi$.

Proof: Essentially repeats its classical counterpart, Sec 1.1 of Lee 17 . We can replace $H$ w. a quotient to assume that $\varphi: \zeta \hookrightarrow A_{\alpha}$. Then consider $\widetilde{\zeta}_{5}=$ preimage of $\zeta$ in $H_{s d}$, a Lie subalgebra that fits into the exact sequence

$$
0 \rightarrow \mathscr{H}_{s d-1} \rightarrow \tilde{\zeta} \rightarrow \xi \rightarrow 0
$$

The ideal $\mathbb{H}_{\leq \alpha-1}$ is milpotent $6 / \mathrm{c} \operatorname{deg}[; \cdot] \leqslant-d$. So the SES splits. This gives a locally finite representation of $\zeta$ in $\mathscr{H}$ by derivations. It lifts to a rational representation of a simply connected cover $\tilde{H}$ of $H$ on $\mathscr{H}$ by automorphisms. Note that, by the construction, grot $\simeq A$ is $\widetilde{H}$-equivariant. Since $\tilde{H} \curvearrowright A$ factors through $H$, the same is true for $\tilde{H} \sim \mathbb{H}$

