Lecture 5.

1) Semisimple orbits & Jordan decomposition.
2) \(\mathfrak{sl}_2 \)-triples.

Refs: [B], Ch.1, Sec 6.3; [CM], Secs 2.1, 2.2, 3.1-3.4;

1.1) Semisimple elements

In Sec 2.1 of Lecture 4 we’ve defined the notion of a nilpotent element. Similarly, we can define the notion of a semisimple element.

Definition: An element \(x \in \mathfrak{g} \) is called \textit{semisimple} if \\
\(\exists \) faithful (equiv., \(\mathfrak{h} \)) representation \(\varphi: \mathfrak{g} \rightarrow \mathfrak{gl}(V) \), the operator \(\varphi(x) \) is s/simple (\(\Leftrightarrow \) diagonalizable).

As in the nilpotent case, if \(x \) is s/simple, then so is every element in \(\mathfrak{g}x \). So we can talk about s/simple \(\mathfrak{g} \)-orbits in \(\mathfrak{g} \). The classification of such orbits is uniform. Let \(\mathfrak{k} \subset \mathfrak{g} \) be a Cartan subalgebra and \(W \subset \mathfrak{g}(\mathfrak{k}) \) be the Weyl group.
Theorem (see Sec 2.2 in [CM]) Every element of \(\mathfrak{h} \) is simple. Every simple orbit in \(\mathfrak{g} \) intersects \(\mathfrak{h} \) at a single \(\mathcal{W} \)-orbit. This gives rise to a bijection between the set of simple orbits in \(\mathfrak{g} \) and the set \(\mathfrak{h}/\mathcal{W} \) of \(\mathcal{W} \)-orbits in \(\mathfrak{h} \).

Examples: 1) \(\mathfrak{g} = \mathfrak{gl}_n \). A semisimple element is a diagonalizable matrix. Every semisimple orbit is uniquely determined by the eigenvalues (of any of its elements). The collection of eigenvalues is an unordered \(n \)-tuple of numbers whose sum is 0 — exactly an element of \(\mathfrak{h}/\mathcal{W} \).

2) \(\mathfrak{g} = \mathfrak{so}_{2n+1} \). We realize \(\mathfrak{so}_{2n+1} \) as matrices skew-symmetric w.r.t. the main anti-diagonal: \((0, 1, \ldots, 0, -1, 0, \ldots, 0)\). For \(\mathfrak{h} \) we can take the subalgebra of all diagonal matrices: \(\mathfrak{h} = \text{diag}(x, \ldots, x, 0, -x, \ldots, -x) \subset \mathfrak{so}_{2n+1} \); \(\mathcal{W} = S_n \times \{\pm 1\}^n \) acting on \(\mathfrak{h} \) by "signed permutations."

Exercise 1: Let \(x \in \text{End}(\mathbb{C}^{2n+1}) \) be diagonalizable. For \(\lambda \in \mathbb{C} \), let \(\mathcal{V}_\lambda \) denote the \(\lambda \)-eigenspace of \(x \).
(1) Show that $x \in \mathfrak{so}_{2n+1} \iff V_\lambda^+ \oplus V_\lambda^- = \mathbb{C}^{2n+1} \not\ni \lambda.$

(2) Deduce Theorem in this case.

Exercise 2: Work out the examples of $g = \mathfrak{sp}_{2n} \& \mathfrak{so}_{2n}$ (the latter is more subtle) in a similar fashion.

1.2 Jordan decomposition

Theorem in Sec 1.1 classifies semisimple orbits. Our goal is to classify all orbits. It turns out that one can reduce the classification of all orbits in G to the classification of nilpotent adjoint orbits for a smaller group. The first step is the so-called *Jordan decomposition*.

For the next theorem, see [B], Ch. 1, Sec 6.3.

Theorem: 1) Let $x \in g$. Then $\exists!$ s/simple x_s & nilpotent $x_n \in g$ s.t. $[x_s, x_n] = 0 \& x_s + x_n = x$ (the *Jordan decomposition*).

2) Let $\varphi: g \rightarrow \tilde{g}$ be a homomorphism of s/simple Lie algebras. Then $\varphi(x)_s = \varphi(x_s), \varphi(x)_n = \varphi(x_n) \not\ni x \in g.$

3]
Exercise: \(\cdot \) Verify 1) for \(g = \mathfrak{gl}_n \).

\(\cdot \) Deduce the equivalence of conditions in the definition of nilpotent element (Sec 2.1 of Lec 4) from Thm.

1.3) Levi subgroups & reduction to classification of nilpotent orbits.

Definition: By a\textbf{ Levi subgroup of }\(G \) we mean the centralizer of a simple element in \(g \).

Examples: 1) \(G = SL_n \) Up to conjugation, a semisimple element \(x \) is \(\text{diag}(x_1, x_2, \ldots, x_k) \) w. \(x_i \neq x_j \) for \(i \neq j \). The centralizer \(Z_G(x) \) consists of the block diagonal matrices w. blocks of sizes \(m_1, \ldots, m_k \).

2) \(G = SO_{2n+1} \) Can assume \(x = \text{diag}(x_1, -x_1, x_2, -x_2, \ldots, x_n, -x_n) \).

Exercise 1: Identify \(Z_G(x) \) w. \(\prod_{i=1}^k \mathfrak{gl}(m_i) \times \mathfrak{so}(m_0) \).

Fact: For the general \(G \), every Levi subgroup \(L \) is a connected reductive group.
In particular, (L,L) is a semisimple group, $L = z(L) \oplus [L,L]$, and all elements in $z(L)$ are simple.

Exercise 2: Check these claims in the examples.

Proposition: Fix a semisimple element $x \in g$. Let $L = \mathbb{Z}_g(x)$.

There's a bijection between:

1. The G-orbits $Gy \leq g$ w. $Gy_5 = Gx$

The map $(2) \rightarrow (1)$ sends $(L,L)y'$ to $G(x+y')$.

Sketch of proof: Let's construct a map $(1) \rightarrow (2)$. We can assume $y_5 = 1$. We have $(gy)_5 = x \iff (2)$ of Thm in Sec 1.2 applied to the automorphism g of g. $g \cdot y_5 = x \iff g \in L$. We claim $y_n \in [L,L]$. Indeed, let π_1, π_2 denote the projections $L \rightarrow z(L), [L,L]$ so that $y_n = \pi_1(y_n) + \pi_2(y_n)$. But $\pi_1(y_n)$ is semisimple and if it's $\neq 0$, then $(y_n)_5 = \pi_1(y_n) + \pi_2(y_n)_5 \neq 0$, a contradiction w. y_n being nilpotent.

Also, $L = \mathbb{Z}(L)(L,L)$ implies that each L-orbit in L is a...
single (L,L)-orbit. The map $(1) \to (2)$ sends L_y to $(L,L)\gamma$, where we choose $y \in \gamma$, $y_3 = x$.

Exercise 3: Show that the two maps are well-defined & mutually inverse.

2) s_L-triples.

Here we explain an approach to studying nilpotent orbits. We will relate them to (L-conjugacy classes of) homomorphisms $s_L \to g$, a.k.a. "s_L-triples." The point of this: we can use the representation theory of s_L to study the nilpotent orbits — we will do so in this lecture & subsequent ones.

Definition: An s_L-triple in g is $(e,h,f) \in g^3$ s.t. the defining relations of s_L hold: $[h,e] = 2e$, $[h,f] = -2f$, $[e,f] = h$.

Of course, to give such is to give a homomorphism $s_L \to g$.

Note that e is nilpotent: this follows, e.g., from 2) of Thm in Sec 1.2 — but can also be proved directly.
Theorem (Jacobson-Morozov: [CM], Sec 3.2)
Every nilpotent element $eefg$ is included into an \mathfrak{sl}_2-triple.

Theorem (Kostant) Let $(e,h,f), (e,h',f')$ be \mathfrak{sl}_2-triples. Then $\exists g \in G$ s.t. $g.e = e, g.h = h', g.f = f'$.

This theorem will be proved below.

Cor: The map $(e,h,f) \mapsto e$ gives rise to a bijection between:
- G-conjugacy of \mathfrak{sl}_2-triples
- Nilpotent G-orbits.

Proof: JM theorem says the map is surjective & Kostant’s thm says the map is injective. □

Example: $\mathfrak{sl}_2 \rightarrow \mathfrak{sl}_n$. A homomorphism $\mathfrak{sl}_2 \rightarrow \mathfrak{sl}_n$ is an n-dimensional \mathfrak{sl}_2-rep. \mathfrak{sl}_n-conjugacy class = isomorphism class. Recall that fin. dimensional \mathfrak{sl}_2-reps are completely reducible and for each dimen-
sion $\exists!$ irrep. It follows that the n-dimensional \mathfrak{sl}_2-reps are
classified by the partitions of n. Also in each \mathfrak{sl}_2-irrep in
the standard basis, e acts as a single Jordan block. So
Corollary recovers the classification of nilpotent orbits in \mathfrak{sl}_n via Jordan types.

2.1) Proof of Kostant's theorem

We will need a slightly stronger claim, where we choose g from a certain subgroup of $Z_i = Z_i(e)$. For $i \in \mathcal{I}$, set $g_i = \{x \in g \mid [h,x] = i x \}$, $Z_i = Z_i g_i$. From the rep theory of \mathfrak{sl}_2, we deduce that $Z = \bigoplus_{i \in \mathcal{I}} Z_i$. Consider the ideal $Z_+ = \bigoplus_{i \in \mathcal{I}} Z_i$ in Z.

It is contained in $\bigoplus_{i \in \mathcal{I}} Z_i$; and the latter subalgebra consists of nilpotent elements (Exercise: check this in examples). So Z_+ consists of nilpotent elements and hence $Z_+ = \exp(Z_+)$ is an algebraic subgroup of Z.

Exercise: Z_+ is normal in Z. It's unipotent as an algebraic group.

The following claim implies Kostant's theorem.

Proposition: Let (e,h,f), (e,h',f') be two \mathfrak{sl}_2-triples. Then $\exists g \in Z_+$ w. $gh = h'$, $gf = f'$.

8
Proof: Step 1:

Claim: \(Z_+ h = h + z_+ \)

Exercise: prove this using that \(z_+ = \oplus z_i \) & \(Z_+ = \exp(z_+) \).

Step 2: Here we show that \(h' \in Z_+ h = [\text{Step 1}] = h + z_+ \iff h' - h \in z_+ \). Note that \([e, h' - h] = -2e + 2e = 0 \) & \(h' - h = [e, f' - f] \in \text{im} \[e, \cdot\] \). From the rep. theory of \(\mathfrak{sl}_2 \), we know that \(z = \ker \[e, \cdot\] \cap \text{im} \[e, \cdot\] = z_+ \); \(h' - h \in z_+ \) follows.

Step 3: We can apply an element of \(Z_+ \) to \((h, f) \) and assume \(h' = h \). We claim that then \(f' = f \). Indeed, \([e, f' - f] = 0 \iff f' - f \in z \). But \(f' - f \in z \). But \(z = \{0\} \), so \(f' = f \). \(\square \)