Lecture 8. 1) Filtered Poisson deformations. 2) Singular symplectic varieties. 3) Spec CLOI is singular symplectic. Ref: [Be].

1) Filtered Poisson deformations. In Sec 2.1 of Lec 3 we have introduced the notion of a filtered quantization of a Theory of Poisson algebra A. Now we will introduce its classical counterpart.

Definition: Let A be a 72-graded Poisson algebra w. deg {:; 3 = -d (for de 7(2)). By its filtered Poisson deformation we mean a pair (A, c), where · It is a Poisson algebra equipped with an algebra filtration A° = U Rei s.t. [Aei, Rei] C Rei+j-2 + i.j. Note that this gives rise to a deg -d {:, 3 on gr SP: {a+ f_{si-1, 6+ f_{sj-1}} = {a, 6} + f_{si+j-d-1} (ae f_{si}, 6e f_{sj-1}) \therefore $Gr \mathscr{A}^{\circ} \xrightarrow{\sim} A$, iso of graded Poisson algebras.

Similarly to the notion of isomorphism of filtered quantizations (Sec 2.3 of Lec 4) we can talk about isomorphisms of filtered Poisson deformations.

Goal: Assume A is positively graded (meaning that A=C & Ai = 0 for i < 0) & fin. generated. Classify filtered quantizations & filtered Poisson deformations of A (up to iso). We are mostly interested in $A = \mathbb{C}[\tilde{O}]$ for equiv. covers \tilde{O} of nilpotent orbits (see Thm in Sec 2 of Lec 7).

2) Singular symplectic varieties. One should not expect this problem to have a reasonable answers unless one imposes additional restrictions on A. Here is one restriction that can be imposed,

Definition 1 ([Be]): Let X be a normal & irreducible Poisson variety (i.e. Ox is equipped with a Poisson bracket). We say that X has symplectic singularities (is singular symplectic or just symplectic) if conditions (1) & (2) below hold:

(1) The Poisson structure on X reg (the smooth locus) is nondegenerate. Let w^{reg} denote the corresponding symplectic form.

(2) There's a resolution of singularities Y -X (Y is smooth, It is proper & birational) s.t. $\pi^* \omega^{reg} \in \Gamma(\pi^{-1}(\chi^{reg}), Sl_y^2)$ extends to Y, i.e. is the restriction of some $\tilde{\omega} \in \Gamma(Y, \Omega_{Y}^{2})$ ($\tilde{\omega}$ is automatically unique).

Kemarks: 1) As Beauville checked in Sec 1.2 of [Be], condition (2) is equivalent to the stronger condition: the conclusion of (2) holds for all resolutions.

2) To is closed but we don't require is to be non-degenerate $(\iff symplectic)$. If it is, then we say that $\pi: Y \to X$ is a symplectic resolution of singularities.

Definition 2: Let A be fin. gen'd positively graded Poisson algebra. If X: = Spec(A) is singular symplectic, then we ______say that X is a conical symplectic singularity.

2) Spec CLOI is singular symplectic Let G be a s/simple group. Let O be a G-equivariant cover of a nilpotent orbit in of. In Sec 2 of Lec 7 we've seen that C[O] is fin. gen'd positively graded Poisson algebra. Werll see that Spec (CLÕI) is singular symplectic (and hence a conical symplectic singularity). Here we handle the case when D=Dcoj*, the general case will be covered in the next lecture.

Lemma 1: $X = Spec C[\tilde{O}]$ satisfies (1) \forall cover \tilde{O} of an adjoint orbit. Proof: In the proof of the lemma in Sec. 2.1 of Lec 7, we've seen that codim, X @ 22. Hence codim, reg X " Q 22. Let $P \in \Gamma(X^{reg}, \Lambda^2 T_{x} reg)$ be the Poisson bivector. \tilde{Q} is symplectic, so Px is non-degenerate & x E O. Let $n = \frac{1}{2} \dim \widetilde{O}$. For $x \in X^{reg}$, the bivector F_x is degenerate $\iff \Lambda^n \mathcal{P}_x = 0, \quad \text{But} \quad \Lambda^n \mathcal{P} \in \Gamma(X^{\text{reg}}, \Lambda^{2n} \mathcal{T}_{X^{\text{reg}}}). \qquad \text{The zero}$ locus of a section of a line bundle has pure codim 1. The to codim x reg X reg (\$\$ >2, the zero locus of 1"P is empty. []

In the rest of the section we'll check (2) for X =Spec C[O] by explicitly constructing a resolution of X. Let (e,h,f) be $\mathcal{S}[-triple \ w. \ e \in O$. Recall the decomposition of = Doj; of = {xeof [h,x]=ix}. Consider Jzz C Jzo. Note that: · of ~ of ~ of 21, where of consists of nilpotent elements. We have of = Lie (Go), where Go = ZG(h), a Levi subgroup. Then $P := G \times exp(\sigma_{3,1})$, an algebraic subgroup of $\sigma_{3,1}$, connected b/c so is Go. · 0] 22 is an ideal in 0] 20, hence preserved by Gzo.

Set $Y: = G \times^{P} g_{22}$. By definition, this is the quotient of $G \times g_{22}$ by the action of P given by $p.(g,x)=(gp^{-1}, p.x)$ (see Sec 4.8 in [PV] for the construction). The P-orbit of (g,x) - a point in Y - will be denoted by [g,x]. The map $[g,x] \mapsto gP$ realizes Y as a G-equivariant vector bundle over G/P. Furthermore the action map $G \times g_{22} \rightarrow g, (g,x) \mapsto gx$, is P-invariant, hence gives a well-defined map $\pi: Y \rightarrow g, [g,x] \mapsto gx$, (1)

Here is our main result.

hm: (1) IT is a projective morphism. (2) im $\mathcal{P} = \overline{\mathcal{O}}$. (3) $\pi: Y \longrightarrow O$ is a resolution of singularities. (4) it factors through X = Spec C[O]. (5, Panyusher) Let WKK be the Kirillov-Kostant form on O. Then IT * WKK extends to Y (this checks condition (2) of Defin 1 in Sec 2).

Proof of Theorem (1): The subalgebra of no is parabolic (meaning that it contains a Bovel subalgebra), so PCG is a parabolic subgroup, and hence G/P is projective (a parabolu flag variety for G) See [OV], Exer. 20-27 for Sec 4.2. Now note that we have factorization induced by $g_{z_1} \rightarrow g \rightarrow g \xrightarrow{\rho} (g, x] \mapsto g x$ Further we have the following commutative diagram

Since GIP is projective, the & arrow is projective. So is the arrow. This proves (1). (2): We claim that Pe is an open orbit in of This enough to show Te Pe= g_2. But Te Pe= [k,e]= [e, g] = [rep. th. of sh] =]72. Since $im \pi = G_{\sigma_{72}}$, we see that Q = Ge is dense in $im \pi$. Since π is projective, im π is closed, giving im $\pi = 0$. (3) We claim that gr: G×PRe ~> O. We have G×PRe $\simeq G/Z_p(e)$ so it's enough to show $Z_p(e) = Z_c(e)$. First, note $3_{q}(e) \subset q_{20} = \beta \implies 3_{k}(e) = 3_{q}(e) \cap \beta = 3_{q}(e).$ Then, by Sec 1 of Lec 6, Zgle) = Zgle,h,f) x Zy. The subgroup Z, is connected, so 3p(e)=3g(e) ⇒ Z, CZp(e). And $Z_{\zeta}(e,h,f) \subset$ $\mathcal{Z}_{\mathcal{L}}(e) \cap \mathcal{Z}_{\mathcal{L}}(h) = \mathcal{Z}_{\mathcal{L}}(e) \cap \mathcal{L}_{\mathcal{L}}(e) \cap \mathcal{P} = \mathcal{Z}_{\mathcal{L}}(e).$

So $Z_{q}(e) = Z_{p}(e)$, and π is bivational. Combining this with (1), we see that I is a resolution of singularities.

(4): Note that X is the normalization of Q. Now we use the following: \forall dominant morphism $\Upsilon \rightarrow \chi'$, where Y is normal factors through the normalization of X.

(5) Let $d \in \beta$. We can identify $T_{(1,2)}$ with $\sigma_{<0} \oplus \sigma_{2}$ via (X, y) + X, (1, 1) + Y, where y is viewed as a tangent vector to the fiber. Here x, is the image of XEOg under the homomorphism of -> Vect (Y) induced by the Gaction. Exercise 1: Check that the map $\sigma_{s_0} \oplus \sigma_{\sigma_1} \to T_{(\eta,a)} Y$ is an iso Hint: since of = of <0 \$\$ the map of <0 \$\$ T, (G/P), X \$\$ X, CIP, 1 is an iso, then use SES $0 \rightarrow q_{12} \longrightarrow T_{(1,2)}(G \times q_{12}) \longrightarrow T_{q}(GP) \longrightarrow 0.$

For $\mathcal{A} \in Pe$, we want to compute $d_{\mathcal{T}_{(1,\mathcal{A})}}^* \omega_{\mathsf{K},\mathcal{A}}$

(*)

Let's explain why we need the claim. For LE of m, define $\widetilde{W}_{(1,\alpha)} \in \Lambda^2 T^*_{(1,\alpha)} Y$ as (*) - this makes sense even if $\alpha \notin Pe$.

Exercise 2:]! G-invariant 2-form & on Y whose value at (1, a) is $\widetilde{\omega}_{(1,2)}$. It extends $\pi^*\omega_{kk}$ proving (5).

Proof of Claim: Recall that $W_{KK,d}([\overline{3},d],[\overline{\gamma},d]) = (d,[\overline{3},\underline{\beta}]), \forall \overline{3}, \underline{\gamma} \in O_{\overline{j}}.$ We have $d_{\mathcal{T}_{(1,d)}}(x,y) = [x,d] + y$. Note that $\exists y' \in g_{70}$ w. y=[y', 2]. Indeed, 2=pe for pEP. The subspaces of 70 < 0]70 are P-stable. We have p'y e of a cim [e,], so I y" e of no w. p'y=[y,"e]. Set y:=py." Let [E,d]=[x,d]+y: we can find $X \in \mathcal{G}_{<0}, y \in \mathcal{G}_{22}$ e.g. b/c im $d\mathcal{F}_{(1,d)} = T_{\alpha} \mathcal{O} = [\mathcal{G}, d]$, so that We can take = X+y! Let [p, 2] = [u,2]+v, ueg_0, veg_2. Then $d\mathcal{J}_{(1,2)}^* \omega_{KK,2}((x,y),(u,v)) = (d, [5, p]) = (5, [p, 2]) =$ $= (x+y', [u, d]+v) = ((y', v) = 0 \ b/c \ y' \in q_{20}, v \in q_{22}) =$ = (X, [u, L]) + (X, v) + (y', [u, L]) = [(y', [u, L]) = - ([y', L], u)= -(y, u)] = (d, [x, u]) + (x, v) - (y, u).