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1 Singularity Zoo
For a nilpotent orbit O we haveprovedthat SpecECO
is singular symplectic using a Lie theoretic construction

Our next goal is to generalize this to Spec ALTO for
an equivariant cover Q of a nilpotent orbit Theproof
here is an Algebrageometric lemme based onrelations

between different kinds of singularities In thissection
we'llgive a brief

discussion of CohenMacaulay Gevenstein

rational singularities Then we'llprove the lemma

1 1 CohenMacaulay schemes Ref E Sees PF 19
Let R be a commutative associative unital ring and



M be a finitely generated Rmodule
Definition An M regular sequence in R is a collection

f fueRI fi is not a zero divisor in M ftp fi M ti

and far fi M M

If M R wejust talk about regular sequences

In fact this is independent ofthe order of fanfic
Now let X be a finite type scheme E andMeCehX

Pick xex write Ox M for the stalks ofORM at x

Definition The depth 2114,1 ofMx is the maximal
numberof elements in an M regular sequence in the
maximal idealM ofOxy
JU is maximal CohenMacaulay MCM at x if LMx
LimOx t dim X M is MCM if it'sMCM at AxeX
X is Cohen Macaulay M Cat x ifOx is MCMlat x

Remark By E Theorem 17.8everymaximalMxregular

asequence
in M has the same number ofelements



Examples 1 Every smooth variety isCM forxeX take

fortheOx s t data dafneTI is a basis This is a regular
sequence Further M isMCM iff its a vectorbundle

see CET Thin 19.9

2 Let I be affine smooth Let f free x be a
regularsequence and Yc X be a subschenggivenbyfartic the

condition ofbeing regular means cedimyAk Then X is CM
Wesay that X is a complete intersection

12 Gorenstein schemes E Sec21

In the study of smooth varieties an important role
is played by a canonical bundle fthe bundle of top
forms It turns out this can begeneralized to any
finite type at least schemes to thedualizing complex
in the derived category The CohenMacaulayschemes

are characterized by theproperty that this complex sits
in a single homological degree f dimX borenstein schemes

we are going to introduce are characterizedby theproperty

that itis a line bundle
I



For the sake of completeness let'sgive a selfcontained
definition that we are notgoing to use Let Xbe a finite
type M scheme xeX R Oxy

Definition An MCM Rmodule W is calledcanonical

if R End W Wadmits a finiteinjective resolution

By E Sec 21.6 Wexistsand is unique

Definition X is Gerenstein it t x thecanonicalOx
module is Oxx

Example LE Sec 21.8 Smooth schemes local complete
intersections are borenstein

13 Rational singularities
Here is a strengthening of the CMproperty that will

play an important role in what fellows Let X be

ya
normal finite type scheme d



Definition X has rational singularities if I Est
resolution of singularities q Y X s t Rigbyso
fine
Remarks A yay Oy ble X is normal H Ch3
Sec 11

2 smooth a rational singularitiesSFM

14 Relations to symplectic singularities
Theorem 1 Be Preposition 1.3 Any singular symplectic

variety is Gevenstein has rational singularities

Thefollowing theorem is apartial converse

Theorem 2 NamiKawa Suppose that X is Levenstein
has rational singularities Also suppose that X er
has a symplectic form Then X is singularsymplectic

Rem Let's sketch why symplectic rational Let Xbe an

formal
CM variety Kempfprovedthefollowing



X has rationalsingularities Flat resolution of
singularitiesY X s t A topform G on X d extends

to Y Now if Ares is symplectic we have that olive is
a free rich Oxvegmodule w basis A corer n dimX

If X is symplectic then wresextends to Yandhence

so does any top form So X has rational singularities
Therefore having symplectic singularities is thenatural

strengthening of having rational singularities in thesetting
of Poisson varieties

1 5 Spec CLO is singular symplectic
The argument below is 223 Lemme 2.5 Recall
that we assume that O is a Gequivariant cover of
e nilpotent orbit Let A Spec Ellis By Lemma I in
Section 2 in Lec 8 Net is symplectic It turns out
that X is Levenstein w rational singularities 6k
SpecECO is a result of Breer We apply Theorem 2

from Sec 9.8 to finish the proof

GT



2 Basics of Invarianttheory
Thegoal ofthis section is an express intro to Invariant

theory

2 1 Categorical quotients

Let G be a reductive algebraicgroup perhapsdisconnectedSuppose that it acts algebraically on an affine

variety X The following resultgoes back to Hilbert it

uses that the rational Greps are completely reducible

Theorem 1 Thealgebra of invariants Glx is finitely
generated

So we can form the variety 11119calledthecategorical
quotient of X by theaction of G The inclusion CCxD
fly gives rise to a dominantmorphism X XIG
called thequotient morphism and denotedby Hc

Bythe verydefinition thepair 11119Ia enjoys
the

following universalproperty that explains the name
I



categorical quotient
Exercise Let Y be an affine variety q X Y a

Ginvariant morphism Then I q X1G Y w g gesta

Thefollowing important theorem describes basicproperties
of sta Theproof is also based on the complete reducibility

Theorem 2 The following are true

1 If Ic X is a fstableclosedsubvariety then

stalz X1G is closed itis identified w 116
2 If E Zz are closed Cstable EMZedthen
Z IN ST Zz d
3 t yet116 7 closed Gorbit in Haily

So thepoints of 11116parameterize the closed Gorbits
in X

Tofinish this section we discuss the situation when

C is finite Here we write Xh insteadof11114
Theproofof thenextpreposition is an exercise

A



Proposition 1 If C isfinite then Ha X NG is
finite Kevery fiber is a single Corbit

We can to someextent describe the local structure of
XC We'll do this when G isfinite

Proposition 2 Let HcGbe a subgroup The loans of ZeNH
sit the natural morphism it XH XG is etale at z
consists exactly of the Horbits of xeX set GcH

This proposition tells us that etale locally near yeNG
thequotient XG leeks like XG near Gx for xell w Gay

22 Properties ofquotients
One can start by askingfor which Gactions on a
smooth affine X the quotient X1G is smooth Let's
address this question in the case when XV is a vector

space w linear Caction thegeneral case reduces to

ghere G is finite this is an essential restriction



Definition A complex reflection in Cllr is a finiteorder
element se LIV st riels id 1 Afinite subgroup in

GLA is called a complex reflectiongroup if it'sgenerated

by complex reflections

Example Every real reflectiongroup is a complexreflectiongroup This applies forexample to a WeylgroupW

acting en e Cartan subalgebra 5

Theorem Chevalley Shephard Todd Let CcGLN be a

finitegroup TFAE

a G is a complex reflectiongroup
161 V19 issmooth

c GIV is a free v3module

Theproof can be found in LBJCh5 Sec5

Rem In fact forany reductivegroup G andanyaffine

gariety
X w rationalsingularities thenNIGhas rational



singularities as well a theorem ofBoutet see PV Sec3.0
If G is a finitesubgroup in GLv that doesn't

containcomplex reflections then V is Gorenstein Gc544


