
In this talk we compute the quantum connection of T ∗G/B, identify its
monodromy with the action of the affine braid group from Mitya Vaintrob’s
talk, and briefly discuss the heuristics for this identification. The material is
almost entirely from [1], but of course all errors are mine.

1 Review of the geometry of T ∗G/B

Let G be a complex semisimple simply-connected Lie group. We write T for a
maximal torus, and g, t for the respective lie algebras.

1.1 Symplectic Resolutions

Let X be a smooth algebraic variety equipped with a holomorphic symplectic
form Ω. Let X0 be the affinization of X, i.e. the spectrum of the ring of alge-
braic functions on X. There is a natural map π : X → X0.

Definition: We call X a symplectic resolution if π is birational and proper,
and there is an action of C∗ which dilates the symplectic form by a nonzero
character ~.

Proposition: T ∗G/B, equipped with the canonical holomorphic symplectic
form and the C∗ action dilating the cotangent fibers, is a symplectic resolution.
Its affinization is X0 = N , the cone of nilpotent elements in g.

For more details, see [2]. Many of the techniques we use below apply to
a general symplectic resolution: other examples include T ∗G/P for a general
parabolic P , resolutions of slices to nilpotent orbits, Hilbn(C2) and more gen-
erally Nakajima quiver varieties, and hypertoric varieties.

1.2 Cohomology and Curve Classes

G acts on G/B, hence acts symplectically on T ∗G/B. Let G = G× C∗, where
C∗ acts on T ∗G/B by dilating the cotangent fibers by a character ~. We have

H∗G(T ∗G/B,Z) = H∗G(G/B)

= H∗G(G/B)⊗H∗C∗(pt)
= H∗B(pt)⊗H∗C∗(pt)
= H∗T (pt)⊗H∗C∗(pt)
= Sym(P )⊗ Z[~]

= Z[u1, ..., un]⊗ Z[~]

where T is a maximal torus for G, n is the rank of G and P is the weight lattice.
In particular, we have H2(X,Z) = P and H2(X,C) = t∗, where t = Lie(T ).

Every positive coroot α∨ ∈ Hom(P,Z) = H2(X,Z) corresponds an SL2

subgroup Gα∨ ⊂ G. Its orbits in G/B are rational curves of class α∨. These
generate the effective cone of T ∗G/B.
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1.3 Action of the graded affine Hecke Algebra on coho-
mology

In Yi Sun’s talk, we saw an action of the Weyl group W on the cohomology of
Springer fibers. Here we describe the equivariant analogue of this action on the
Springer fiber G/B; we will use it later to describe quantum multiplication.

Recall that Z = T ∗G/B ×N T ∗G/B is a union of lagrangians in T ∗G/B ×
T ∗G/B indexed by the Weyl group. Any class γ ∈ H∗G(Z) (thought of as
equivariant Borel-Moore homology) defines an endomorphism of H∗G(T ∗G/B)
by

γ(θ) = (π2)∗γ ∩ π∗1θ.

As before, these endomorphisms form an algebra under convolution. Recall that
the degenerate affine Hecke algebra H′ is generated by the symmetric algebra
Sym(t∗) = C[u1, ..., un] and the group algebra CW , subject to the relation

siu− si(u)si = ~(αi, u)

for any simple reflection si and linear generator u ∈ t∗. The definition we use
in this chapter is slightly narrower than the one previously introduced.

Theorem: [3] There is an isomorphism φ : H′ ∼−→ H∗G(Z), where the RHS
is viewed as a convolution algebra. We have

φ(uλ) = c1(Lλ), λ ∈ P

where Lλ is the equivariant line bundle associated to λ, supported along the
diagonal component of Z. We also have

φ(si − 1) = [Zi]

where si is a simple reflection, and Zi is defined as follows. Let Pi ⊂ G be the
parabolic corresponding to si. Let Yi = G/B ×G/Pi G/B. Then Zi = N∗Y i, the
conormal bundle of Y in T ∗G/B × T ∗G/B.

We therefore have an action of H′ on H∗G(T ∗G/B) = C[u1, ..., un] ⊗ C[~].
Lusztig also describes the representation explicitly:

Theorem: [3] Under φ, uλ acts by multiplication, while si acts by the
following ‘discrete derivative’:

(1− si)f(u) = (f(u)− f(si(u)))

(
1− ~

αi

)

1.4 Poisson deformations of a symplectic resolution

The poisson deformations of X are classified by the image of Ω in H2(X,C). In
our case, H2(T ∗G/B,C) = t∗, and the space of poisson deformations coincides
with the Grothendieck simultaneous resolution. Non-affine deformations live
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over certain ‘root hyperplanes’ Hα ⊂ H2(X,C); for T ∗G/B, these are the usual
root hyperplanes.

The fiber over a generic point of t∗ is the affine space G/T , whereas T ∗G/B
is the fiber over zero. The fiber Xα over a generic point of a root hyperplane
Hα is described as follows:

Let Tα ⊂ T be the kernel of α, and let Lα ⊂ G be the centralizer of Tα We
have an exact sequence

1→ T → Lα → PGL(2,C)→ 1

which defines an action of Lα on T ∗P1, via the action of PGL(2,C).

Proposition: The generic fiber over the hyperplane Hα is given by

Xα = G×Lα T ∗P1.

2 Computing the quantum cohomology of a sym-
plectic resolution

2.1 Triviality of non-equivariant quantum cohomology

The ordinary quantum cohomology of a symplectic resolution is equal to the
classical cohomology ring. In our case, this can be seen directly, since T ∗G/B
deforms to the affine space G/T , whose Gromov-Witten invariants vanish (recall
that Gromov-Witten invariants are invariant under deformations of the complex
structure).

However, there is no C∗-equivariant deformation to an affine space, and in
fact the C∗-equivariant quantum cohomology is non-trivial, as we will see.

2.1.1 Quantum product from the deformation

For a divisor u and β 6= 0, we have

〈γ1, u, γ2〉X,G0,3,β = (u, β)〈γ1, γ2〉X,G0,2,β

by the divisor equation (the superscript G indicates equivariant invariants). If
cohomology is generated by divisors, as is the case for T ∗G/B, the quantum
cohomology is thus determined by the two-point invariants.

One can rewrite them as follows. We have

〈γ1, γ2〉X,G0,2,β = 〈Lβ(γ1), γ2〉G.

where
Lβ = (ev1 × ev2)∗[M0,2(X,β)]vir ∈ HBM,G

2dimX−1(X ×X,C).

Our task is therefore to characterize Lβ . We know that Lβ vanishes in
ordinary cohomology for β 6= 0, i.e. it should be divisible by ~. To understand
the quotient by ~, we use the deformations of T ∗G/B.
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Choose a line l = C ⊂ t∗ through the origin, not contained in any root
hyperplane. Consider the total space π : X(l)→ l of the deformation of T ∗G/B
over this line; π has fiber T ∗G/B = X over 0, and G/T everywhere else. Since
there is only one non-affine fiber, we have

M0,2(X(l), β) =M0,2(X,β).

However, the virtual fundamental classes differ:

Theorem: [1]
[M0,2(X,β)]vir = ~[M0,2(X(l), β)]vir

We write
(ev1 × ev2)∗[M0,2(X(l), β)]vir = Lredβ .

The image of a rational curve C must lie in a single fiber of the affinization map,
since all algebraic functions are constant on C. It follows that Lβ and Lredβ are
supported on the Steinberg variety. Moreover, recall that

dim[M0,n(X(l), β)]vir = dimX(l) + c1(TX(l), β) + n− 3.

Hence we have

dimLredβ = dimX + 1 + 0 + 2− 3 = dimX.

It follows that Lredβ must be a linear combination of components of Z with
rational coefficients. Using the isomorphism φ, we schematically write

Lredβ =
∑
w∈W

cww

where cw ∈ Q. We must now determine the coefficients cw. Since we are looking
for rational numbers, it is enough to work in non-equivariant cohomology. This
allows us to perturb l, which we do in the next section.

2.2 Reduction to rank 1

Choose a generic shift l+a of l, which intersects the hyperplanes Hα in distinct
points. Let πa : X(l + a)→ l + a be the family above l + a.

The generic fiber is again G/T , while the fibers Xα over the intersections
with Hα are T ∗P1 fibrations over G/Lα, as described in ??. Each such fiber Xα

contains a unique primitive curve class α∨ corresponding to a positive root.
Invariance of Gromov-Witten invariants with respect to deformations of the

complex structure implies

〈γ1, γ2〉X(l)
0,2,β = 〈γ1, γ2〉X(l+a)

0,2,β

Since the domain of a stable map is connected, its image in X(l+a) must lie
in a single fiber Xα, hence the only curve classes which contribute are multiples
mα∨ of the positive root classes.
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One must hence compute the class Lmα where α is a positive root. The
Steinberg variety of Xα has two components: the diagonal ∆ and the fiber
product of the natural P1 fibration over G/Lα, which we denote Zα. We have

Lmα = c0∆ + c1Zα ∈ HBM
dimX(Xα ×Xα)

One can show [1] that the computation of c0, c1 reduces to that for a single
fiber T ∗P1 above G/Lα. We have already seen the answer:

c0 = 0, c1 =
1

m
.

We now describe the action of Lα on H∗G(X,C). More precisely, we have an
equality of non-equivariant cohomology

H∗(Xα,C) = H∗(X,C)

which allows us to identify Zα with a class in H∗(X×X). This class is a unique
rational linear combination of components of the Steinberg variety of X. Then
Lα is the natural equivariant lift of this rational linear combination. One sees

Lα = φ(sα − 1) (1)

We can now describe the operator of quantum multiplication by a divisor u.
By the above, we have

u∗ = u+ ~
∑
α∈R+

∑
m

(u,mα∨)qmα
∨ 1

m
(sα − 1) (2)

Since the sum overm is a geometric series, we can write the analytic continuation
of the quantum product as

u∗ = u+ ~
∑
α∈R+

(u, α∨)
qα
∨

1− qα∨
(sα∨ − 1) (3)

3 The Monodromy of the Quantum Connection

Formula 3 shows that the quantum connection of T ∗G/B is

∇u =
d

du
− u− ~

∑
α∈R+

(u, α∨)
qα
∨

1− qα∨
(sα − 1) (4)

It is a meromorphic connection on the trivial vector bundle E with fiberH∗G(X,C)
and base the torus H2(T ∗G/B,C)/H2(T ∗G/B,Z) = t∗/P = T∨, i.e. the ad-
joint torus for the Langlands dual group GL. It is nonsingular on

(T∨)reg = T∨ \ {qα
∨

= 1}

After a gauge transform given by the function δ~ =
∏
α∈R+(qα

∨ − 1)~, it
becomes the affine KZ connection studied by Cherednik and Matsuo:

∇
′

u =
d

du
− u− ~

∑
α∈R+

(u, α∨)
sα

qα∨ − 1
.
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We recall a few facts from Yaping Yang’s talk. There is an action of the Weyl
group on the torus which lifts to an action on E, with respect to which ∇′ is
equivariant. Hence it descends to a connection on the quotient (T∨)reg/W . We
have

π1(T∨)reg/W ) = B̂gL

(since the action of W is not free, this is an orbifold π1) and the monodromy of
∇′ factors through the map

B̂gL → HgL

to the affine Hecke algebra (note: this is the usual affine Hecke algebra, not the
graded one).

Similarly, the action of B̂gL on DbCohG(T ∗G/B) described in chapter ??
descends to an action on K-theory which again factors through HgL . Using an
appropriate character map from K-theory to cohomology, one can show that the
two actions coincide.

3.1 Commuting difference equation

As we have just seen, the monodromy of the quantum connection comes from
an action on K-theory. In particular, the K-theoretic action is linear over
KG(pt) = Rep(G), the ring of finite dimensional representations of G, and
any monodromy operator can be written as a matrix with entires in KG(pt).
Under the character map to cohomology, an element V ∈ KG(pt) is quite liter-
ally sent to its character. For instance, the basic representation of C∗ is sent to
e2πi~. In particular, the monodromy matrix is invariant under shifts ~→ ~+ 1,
and shifts of the equivariant parameters of G by elements of P∨.

This implies that for any s ∈ P∨⊕Z, we have an intertwiner S(s, q) : E → E

S(s, q)∇(a) = ∇(a+ s)S(s, q)

where ∇(a) is the quantum connection with equivariant parameters a. The
S(s, q) form a commuting family of difference operators. Such operators were
originally constructed by Seidel in a different setting. In the case of T ∗G/B,
they are the shift operators described by Opdam.

3.2 Heuristics

Why is the monodromy of a quantum connection related to automorphisms of
DbCoh(X)? We can only give a very schematic and conjectural answer here.

Briefly, under a phenomenon called homological mirror symmetry, pioneered
by Kontsevich, one expects DbCoh(X) to be identified with a variant of the
Fukaya category DπFuk(Y ) of some symplectic manifold Y , and vice-versa with
X and Y interchanged. The objects of the Fukaya category are lagrangian sub-
manifolds of Y (with some extra data), and the morphisms encode intersections
of these lagrangians.

Just asX carries a family of (complexified) symplectic structures parametrized
by an open set U ∈ H2(X,C), Y will carry a family of complex structures
parametrized by the same set, in other words, one really has a ‘mirror family’
of complex manifolds Yb, b ∈ U , all with the same symplectic structure.

The identification of DbCoh(X) and the Fukaya category induces an identi-
fication of H∗(X,C) with H∗(Y,C), such that the quantum connection of X is
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mapped to the Gauss-Manin connection of the family Yb. The latter is the flat
connection induced by the continuous family of lattices H∗(Y,Z) ⊂ H∗(Y,C).

Given a family of symplectictomorphic spaces such as Yb, one can often
produce a ‘symplectic connection’ which associates to a path in the base a
symplectomorphism between the fibers. Up to a hamiltonian isotopy, this sym-
plectomorphism depends only on the homotopy class of the path. Since two
objects of the Fukaya category are isomorphic if they are related by a Hamilto-
nian isotopy, we obtain a ‘flat connection’ on the bundle of Fukaya categories
associated to Yb. Its monodromy produces automorphisms of DπFuk(Y ), lifting
the monodromy of the Gauss-Manin connection.

Since mirror symmetry identifies DbCoh(X) and (a variant of) DπFuk(Y ),
one obtains automorphisms of the former. Since the Gauss-Manin connection
should match the quantum connection, these automorphisms should match the
monodromy of the quantum connection.

Unfortunately (or fortunately), much of this remains to be proven.
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