THE QUANTUM CONNECTION

MICHAEL VISCARDI

1. Review of quantum cohomology

1.1. Genus $\mathbf{0}$ Gromov-Witten invariants. Let X be a smooth projective variety over \mathbb{C}, and $\beta \in H_{2}(X, \mathbb{Z})$ an effective curve class. Let $\overline{\mathcal{M}}_{0, n}(X, \beta)$ denote the moduli space (stack) of genus $0 n$-pointed stable maps $\mu: C \rightarrow X$ with $\mu_{*}([C])=\beta$. Recall that stability means that every contracted irreducible component has at least 3 special points, where a special point is either a marked point or a point of intersection with the rest of the curve. The stack $\overline{\mathcal{M}}_{0, n}(X, \beta)$ is known to be proper by an analogue of Deligne-Mumford stable reduction for maps. Assume that X is convex, i.e. for all $\mu: \mathbb{P}^{1} \rightarrow X$, the obstruction space $\operatorname{Obs}(\mu):=H^{1}\left(C, \mu^{*} T_{X}\right)$ vanishes. Then $\overline{\mathcal{M}}_{0, n}(X, \beta)$ is a smooth and connected stack of dimension

$$
\begin{equation*}
\int_{\beta} c_{1}\left(T_{X}\right)+\operatorname{dim} X+n-3 \tag{1}
\end{equation*}
$$

In particular, for X convex, $\overline{\mathcal{M}}_{0, n}(X, \beta)$ has an ordinary fundamental class $\left[\overline{\mathcal{M}}_{0, n}(X, \beta)\right]$ in this homology dimension, and one can do intersection theory. Examples of convex varieties include homogeneous varieties G / P, where G is a reductive algebraic group and P a parabolic subgroup.

Let $\mathrm{ev}_{i}: \overline{\mathcal{M}}_{0, n}(X, \beta) \rightarrow X, i=1, \ldots, n$, be the i th evaluation morphism

$$
\left(C, p_{1}, \ldots, p_{n}, \mu\right) \mapsto \mu\left(p_{i}\right)
$$

Let $\gamma_{1}, \ldots, \gamma_{n} \rightarrow H^{*}(X, \mathbb{C})$. Then the n-point genus 0 Gromov-Witten invariant of X of class β is defined as

$$
\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle_{\beta}:=\int_{\left[\overline{\mathcal{M}}_{0, n}(X, \beta)\right]} \operatorname{ev}_{1}^{*}\left(\gamma_{1}\right) \cup \ldots \cup \operatorname{ev}_{n}^{*}\left(\gamma_{n}\right)
$$

In this setting, the Gromov-Witten invariants have an enumerative interpretation. Assume that the γ_{i} are homogeneous classes, that $\Gamma_{i} \subset X$ are subvarieties in general position of class γ_{i}, and that $\sum \operatorname{codim} \Gamma_{i}=\operatorname{dim} \overline{\mathcal{M}}_{0, n}(X, \beta)$, so that the above integral is potentially non-zero. Then $\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle_{\beta}$ is the number of n-pointed maps $\mu: \mathbb{P}^{1} \rightarrow$ X of class β with $\mu\left(p_{i}\right) \in \Gamma_{i}$.

We use the notation $\left\langle\gamma^{k}\right\rangle_{\beta}$ to denote $\langle\gamma, \ldots, \gamma\rangle_{\beta}$ where the class γ appears k times.
Example 1.1. Let $[p t]$ be the class of a point in \mathbb{P}^{2}. Then $\left\langle[p t]^{5}\right\rangle_{2}=1$ since there is a unique conic through 5 points in general position in \mathbb{P}^{2}.

We will need the divisor equation, which describes Gromov-Witten invariants for which one of the classes is a divisor class. Let $\gamma_{1}, \ldots, \gamma_{n} \in H^{*}(X, \mathbb{C})$ and $\gamma \in H^{2}(X)$. The divisor equation is

$$
\begin{equation*}
\left\langle\gamma_{1}, \ldots, \gamma_{n}, \gamma\right\rangle_{\beta}=\left(\int_{\beta} \gamma\right)\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle_{\beta} . \tag{2}
\end{equation*}
$$

This is immediate from the enumerative interpretation above, since $\int_{\beta} \gamma$ is the number of choices for the image of p_{n+1}.
1.2. Small quantum cohomology. Let X be as in the previous section. The Kähler cone of X, denoted $K(X)$, is defined as the intersection of $H^{1,1}(X)$ with the cone in $H^{2}(X, \mathbb{R})$ generated by ample divisor classes in $H^{2}(X, \mathbb{Z})$. Define the complexified Kähler cone

$$
K_{\mathbb{C}}(X)=\left\{\omega \in H^{2}(X, \mathbb{C}): \operatorname{Re}(\omega) \in K(X)\right\}
$$

and the Kähler moduli space

$$
\bar{K}_{\mathbb{C}}(X)=K_{\mathbb{C}}(X) / H^{2}(X, 2 \pi i \mathbb{Z})
$$

For simplicity, assume that $h^{2,0}(X)=0$, so that $H^{1,1}(X)=H^{2}(X)$, and assume that X has no odd-dimensional cohomology. Then we have a map

$$
H^{2}(X, \mathbb{C}) \rightarrow H^{2}(X, \mathbb{C}) / H^{2}(X, 2 \pi i \mathbb{Z}) \cong H^{2}\left(X, \mathbb{C}^{*}\right)
$$

defined in coordinates by $t_{i} \mapsto q_{i}=e^{-t_{i}}$, which sends $K_{\mathbb{C}}(X)$ to $\bar{K}_{\mathbb{C}}(X)$.
Example 1.2. For $X=\mathbb{P}^{n}$, the ample divisor classes in $H^{1,1}(X, \mathbb{Z})=H^{2}(X, \mathbb{Z})=\mathbb{Z}$ are the positive integers, so $K_{\mathbb{C}}(X)=\{z: \operatorname{Re} z>0\}$ and is mapped by the exponential to $\bar{K}_{\mathbb{C}}(X)=\mathbb{D}^{*}$, the punctured unit disc.

We can now define the (small) quantum product $*_{\omega}$ on $H^{*}(X . \mathbb{C})$ for each $\omega \in$ $H^{2}(X, \mathbb{C})$ and study its convergence. Let $1=T_{0}, T_{1}, \ldots, T_{m} \in H^{*}(X, \mathbb{C})$ be a homogeneous basis, and let T_{1}, \ldots, T_{p} denote the classes in $H^{2}(X, \mathbb{C})$. Let $T^{0}, \ldots, T^{m} \in$ $H^{*}(X, \mathbb{C})$ be the dual basis defined by $\left(T_{i}, T^{j}\right)=\delta_{i j}$, where (,) is the intersection pairing. Let $\omega=\sum t_{i} T_{i}$ be a class in $H^{2}(X, \mathbb{C})$. Then we define the quantum product with respect to ω by

$$
T_{i} *_{\omega} T_{j}=T_{i} \cup T_{j}+\sum_{\beta>0} \sum_{k} e^{-\int_{\beta} \omega}\left\langle T_{i}, T_{j}, T_{k}\right\rangle_{\beta} T^{k}
$$

Note that this expression exists as an element of $H^{*}(X, \mathbb{C})$ only if the infinite sum in each coefficient converges. For X Fano, each coefficient is in fact a finite sum. Indeed, in order for the Gromov-Witten $\left\langle T_{i}, T_{j}, T_{k}\right\rangle_{\beta}$ to be non-zero, one must have an equality of dimensions (see (1))

$$
i+j+k=\int_{\beta} c_{1}\left(T_{X}\right)+\operatorname{dim} X
$$

since the LHS is bounded above and $c_{1}\left(T_{X}\right)$ is ample, this equality can hold for only finitely many β.

In general, the sum is infinite and may converge for $\omega \in K_{\mathbb{C}}(X)$, since then $\int_{\beta} \omega>0$ and thus the coefficients $e^{-\int_{\beta} \omega}$ decrease as β increases. As $\omega \rightarrow+\infty$ in $K_{\mathbb{C}}(X)$, the coefficients approach 0 , so convergence becomes more likely. For X Calabi-Yau, the sum is conjecturally convergent for ω sufficiently large.

We will assume X is Fano from now on, so that the quantum product is welldefined for all $\omega \in H^{2}(X, \mathbb{C})$. The quantum product is super-commutative by definition. As described in Barbara's lecture, linear equivalences between certain boundary divisors on $\overline{\mathcal{M}}_{0, n}(X, \beta)$ (obtained by pulling back the linear equivalences of the 3 boundary divisors on $\overline{\mathcal{M}}_{0,4}$) yield that the quantum product is associative.

2. The quantum connection

Let X be Fano. We have a well-defined quantum product $*_{\omega}$ for each $\omega \in$ $H^{2}(X, \mathbb{C})$. Each quantum product is a generating function for the same GromovWitten invariants (namely the 3-point ones), but with different weights depending on ω. We would like to study all of these quantum products simultaneously. The idea to do so is very simple: let \mathcal{H} be the trivial vector bundle on $H^{2}(X, \mathbb{C})$ with fiber $H^{*}(X, \mathbb{C})$. Let $\partial_{i}=\partial / \partial t_{i} \in \operatorname{Vect}\left(H^{2}(X, \mathbb{C})\right), i=1, \ldots, p$. Then we can view T_{i} as a constant section of the trivial bundle \mathcal{H}. We will define a connection ∇ on \mathcal{H} such that $\nabla_{\partial_{i}}\left(T_{j}\right)=-T_{i} * T_{j}$, where $T_{i} * T_{j}$ denotes the section of \mathcal{H} whose value at the fiber over ω is $T_{i} *_{\omega} T_{j}$.

Definition 2.1. The quantum connection of X is the connection ∇ on \mathcal{H} defined by

$$
\nabla_{\partial_{i}}=\frac{\partial}{\partial t_{i}}-T_{i} *
$$

This defines a connection on the trivial bundle $\mathcal{H}=\mathcal{O}^{\oplus m+1}$ over \mathbb{A}^{p}.
Remarks 2.2. (1) By definition $\nabla_{\partial_{i}}\left(T_{j}\right)=-T_{i} * T_{j}$.
(2) More invariantly, $\nabla=d-\sum_{i=1}^{p} A_{i} d t_{i}$, where $A_{i} \in \operatorname{Mat}_{m+1}(\mathbb{C})$ is the matrix whose j th column is the coefficients of $T_{i} * T_{j}$.
(3) The function $e^{-\int_{\beta} \omega}$ on $H^{2}(X, \mathbb{C})$ descends to the quotient $H^{2}(X, \mathbb{C}) / H^{2}(X, 2 \pi i \mathbb{Z}) \cong$ $H^{2}\left(X, \mathbb{C}^{*}\right)$. Thus, so do the quantum product and the quantum connection.

Example 2.3. Let $X=\mathbb{P}^{m}$, and set $T_{i}=H^{i} \in H^{*}(X, \mathbb{C})$, where H is the hyperplane class. As was shown in Barbara's lecture,

$$
\begin{aligned}
& T_{1} * T_{0}=T_{1} \\
& \vdots \\
& T_{1} * T_{m-1}=T_{m} \\
& T_{1} * T_{m}=e^{-t} T_{0} .
\end{aligned}
$$

So ∇ is the connection on the trivial bundle $\mathcal{H}=\mathcal{O}^{\oplus m+1}$ over \mathbb{A}^{1} defined by

$$
\nabla=d-A d t
$$

where

$$
A=\left(\begin{array}{ccccc}
0 & & & & e^{-t} \\
1 & 0 & & & \\
& 1 & \ddots & & \\
& & \ddots & \ddots & \\
& & & 1 & 0
\end{array}\right) \in \operatorname{Mat}_{m+1}(\mathbb{C})
$$

Proposition 2.4. ∇ is flat.
Proof. The curvature of a connection ∇ on a locally free sheaf \mathcal{E} over a space X is the map

$$
\nabla^{2}: \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{O}} \Omega_{X}^{2}
$$

defined, for any $v, w \in \operatorname{Vect}(X)$, by

$$
\nabla_{v, w}^{2}=\nabla_{v} \nabla_{w}-\nabla_{w} \nabla_{v}-\nabla_{[v, w]} .
$$

We have $\left[\partial_{i}, \partial_{j}\right]=0$ since partial derivatives on a vector space commute. Using the definition of ∇, for $1 \leq i, j \leq p$ we have:

$$
\begin{aligned}
\nabla_{\partial_{i}, \partial_{j}}^{2}\left(T_{k}\right) & =\nabla_{\partial_{i}} \nabla_{\partial_{j}}\left(T_{k}\right)-\nabla_{\partial_{j}} \nabla_{\partial_{i}}\left(T_{k}\right) \\
& =-\nabla_{\partial_{i}}\left(T_{j} * T_{k}\right)+\nabla_{\partial_{j}}\left(T_{i} * T_{k}\right) \\
& =-\frac{\partial}{\partial t_{i}}\left(T_{j} * T_{k}\right)+\frac{\partial}{\partial t_{j}}\left(T_{i} * T_{k}\right) \\
& +T_{i} *\left(T_{j} * T_{k}\right)-T_{j} *\left(T_{i} * T_{k}\right) .
\end{aligned}
$$

The sum of the last two terms is 0 by associativity and super-commutativity of $*$. As for the first two terms, note that by the divisor equation (2) we have:

$$
T_{j} * T_{k}=T_{j} \cup T_{k}+\sum_{\beta>0} \sum_{l} e^{-t_{1} \int_{\beta} T_{1}} \ldots e^{-t_{p} \int_{\beta} T_{p}}\left(\int_{\beta} T_{j}\right)\left\langle T_{k}, T_{l}\right\rangle_{\beta}
$$

Hence

$$
\frac{\partial}{\partial t_{i}}\left(T_{j} * T_{k}\right)=T_{j} \cup T_{k}-\sum_{\beta>0} \sum_{l} e^{-t_{1} \int_{\beta} T_{1}} \ldots e^{-t_{p} \int_{\beta} T_{p}}\left(\int_{\beta} T_{i}\right)\left(\int_{\beta} T_{j}\right)\left\langle T_{k}, T_{l}\right\rangle_{\beta}
$$

This expression is symmetric in i and j, so the sum of the first two terms is 0 as well.

We next view ∇ as a connection on $H^{2}\left(X, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{p}$ using Remark 2.2(3), and compute its monodromy around 0 in each factor. We will need the following general lemma (see e.g. [1], III, 1.4.1).

Lemma 2.5. Let

$$
d+\Lambda \frac{d x}{x}
$$

be a connection on $\mathcal{O}^{\oplus n}$ over a disk of radius ϵ, where $\Lambda \in \operatorname{Mat}_{n}(\mathcal{O})$. Suppose $\operatorname{Res}_{x=0}(\nabla):=\Lambda(0)$ is a non-resonant matrix, i.e. no two eigenvalues differ by a non-zero integer. Then the monodromy matrix M is conjugate to $e^{-2 \pi i \Lambda(0)}$.

Example 2.6. For $\lambda \in \mathbb{C}$, consider the connection

$$
d+\lambda \frac{d x}{x}
$$

on \mathcal{O} over \mathbb{A}^{1}. This has a flat section $x^{-\lambda}$ with monodromy $e^{-2 \pi i \lambda}$.
Proposition 2.7. The monodromy of ∇ around 0 in the j th factor of $H^{2}\left(X, \mathbb{C}^{*}\right) \cong$ $\left(\mathbb{C}^{*}\right)^{p}$ is conjugate to $e^{-2 \pi i T_{j}}$.

Proof. Set t_{i} constant for $i \neq j$. Let $q_{j}=e^{-t_{j}}$, so that $d t_{j}=-d \log \left(q_{j}\right)=-d q_{j} / q_{j}$. So we can write

$$
\begin{aligned}
\nabla & =d-A_{j} d t_{j} \\
& =d+A_{j} \frac{d q_{j}}{q_{j}} .
\end{aligned}
$$

The k th column of A_{j} is the coefficients of

$$
T_{j} * T_{k}=T_{j} \cup T_{k}+\sum_{\beta>0} e^{-t_{j} \int_{\beta} T_{j}} \ldots
$$

where $e^{-t_{j} \int_{\beta} T_{j}}=q_{j}^{\int_{\beta} T_{j}}$. The monodromy is independent of the choice of neighborhood of 0 , so we may assume that ω lies in the punctured neighborhood $\bar{K}_{\mathbb{C}}(X)$ of 0 . We may additionally normalize T_{1}, \ldots, T_{p} to lie in $H^{2}(X, \mathbb{Z})$. Then $\int_{\beta} T_{j}$ is a positive integer since β is effective and T_{j} is Kähler . So $q_{j}^{\delta_{\beta} T_{j}}$ is holomorphic in q_{j}, and $A_{j}(0)=T_{j} \cup \cdot$. Since $T_{j} \cup \cdot$ raises degree, $A_{j}(0)$ is nilpotent, hence non-resonant. The preceding lemma thus implies that the monodromy is conjugate to $e^{-2 \pi i T_{j}}$.
Example 2.8. For $X=\mathbb{P}^{1}$, set $q=e^{-t}$. The quantum connection is

$$
\begin{aligned}
\nabla & =d-\left(\begin{array}{cc}
0 & e^{-t} \\
1 & 0
\end{array}\right) d t \\
& =d+\left(\begin{array}{ll}
0 & q \\
1 & 0
\end{array}\right) \frac{d q}{q} .
\end{aligned}
$$

Then

$$
\operatorname{Res}_{q=0}(\nabla)=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)=H \cup .
$$

and

$$
M(\nabla) \sim\left(\begin{array}{cc}
1 & 0 \\
-2 \pi i & 1
\end{array}\right)
$$

We would now like to construct flat sections of ∇. These sections will be written in terms of a generalization of Gromov-Witten invariants known as descendant GromovWitten invariants, or gravitational descendants.

3. Descendant Gromov-Witten invariants

3.1. Psi classes.

Definition 3.1. For $1 \leq i \leq n$, let \mathcal{L}_{i} be the line bundle on $\overline{\mathcal{M}}_{0, n}(X, \beta)$ whose fiber at $\left[\left(C, p_{1}, \ldots, p_{n}, \mu\right)\right]$ is the cotangent line $T_{p_{i}}^{*}(C)$. Let $\psi_{i}=c_{1}\left(\mathcal{L}_{i}\right)$.
Formally, let $\pi: \mathcal{C} \rightarrow \overline{\mathcal{M}}_{0, n}(X, \beta)$ be the universal curve with marked sections s_{1}, \ldots, s_{n}. Then $\mathcal{L}_{i}=s_{i}^{*}\left(T_{\pi}^{*}\right)$, where T_{π}^{*} is the relative cotangent sheaf of π.

For $A \sqcup B=\{1, \ldots, n\}$ and $\beta_{1}+\beta_{2}=\beta$, let $D\left(A, \beta_{1} \mid B, \beta_{2}\right)$ denote the closure of the set of maps $\left(\mathbb{P}^{1}, p_{i} \in A\right) \cup\left(\mathbb{P}^{1}, p_{j} \in B\right) \rightarrow X$ of class β_{1} on the first component and β_{2} on the second. This is a boundary divisor on $\overline{\mathcal{M}}_{0, n}(X, \beta)$. For X a point, we denote the resulting boundary divisor on $\overline{\mathcal{M}}_{0, n}$ by $D(A \mid B)$.

Also recall that there exist forgetful morphisms

$$
\overline{\mathcal{M}}_{0, n+1}(X, \beta) \rightarrow \overline{\mathcal{M}}_{0, n}(X, \beta)
$$

and

$$
\overline{\mathcal{M}}_{0, n}(X, \beta) \rightarrow \overline{\mathcal{M}}_{0, n}
$$

defined by forgetting the last marked point (respectively, the map), then contracting unstable irreducible components.

Example 3.2. (1) We have

$$
\begin{aligned}
\mathcal{M}_{0,1}\left(\mathbb{P}^{1}, 1\right) & \xrightarrow{\sim} \mathbb{P}^{1} \\
{[(C, p, \mu)] } & \mapsto \mu(p) .
\end{aligned}
$$

Under this isomorphism $\mathcal{L}_{1}=T^{*} \mathbb{P}^{1}=\mathcal{O}(-2)$, and $\psi_{1}=-2 H$.
(2) We have

$$
\overline{\mathcal{M}}_{0,4} \cong \mathbb{P}^{1}
$$

obtained by fixing p_{1}, p_{2}, p_{3} to $0,1, \infty$ and allowing p_{4} to vary. The 3 boundary components of $\overline{\mathcal{M}}_{0,4}$ arise from bubbling when p_{4} collides with p_{1}, p_{2}, p_{3}. The cotangent line to p_{1} is only affected when p_{4} collides with p_{1}. It easily follows that $\psi_{1}=D(\{1,4\} \mid\{2,3\})$.

A second method to compute ψ_{1} is to consider the forgetful morphism

$$
\nu: \overline{\mathcal{M}}_{0,4} \rightarrow \overline{\mathcal{M}}_{0,3}=p t
$$

which forgets p_{4}. Examining the number of marked points on irreducible components immediately yields the following facts. If p_{2} or p_{3} lie on the same irreducible component C_{0} as p_{1}, then C_{0} is not contracted by ν. Otherwise, C_{0} is contracted. It follows that ψ_{1} is the boundary divisor separating p_{1} from p_{2}, p_{3}, which again gives $\psi_{1}=D(\{1,4\} \mid\{2,3\})$.

The second method used in Example 3.2(2) can be generalized to prove the following:

Lemma 3.3. On $\overline{\mathcal{M}}_{0, n}(X, \beta)$ with $n \geq 3$,

$$
\psi_{1}=\sum_{A \cup B=\{4, \ldots, n\}} \sum_{\beta_{1}+\beta_{2}=\beta} D\left(\{1\} \cup A, \beta_{1} \mid\{2,3\} \cup B, \beta_{2}\right) .
$$

3.2. Descendant invariants.

Definition 3.4. For $\gamma_{i} \in H^{*}(X)$ and a_{i} non-negative integers, $i=1, \ldots, n$, define an n-point descendant Gromov-Witten invariant by

$$
\left\langle\tau_{a_{1}}\left(\gamma_{1}\right), \ldots, \tau_{n}\left(\gamma_{n}\right)\right\rangle_{\beta}:=\int_{\left[\overline{\mathcal{M}}_{0, n}(X, \beta)\right]} \operatorname{ev}_{1}^{*}\left(\gamma_{1}\right) \cup \psi_{1}^{a_{1}} \cup \ldots \cup \operatorname{ev}_{n}^{*}\left(\gamma_{n}\right) \cup \psi_{n}^{a_{n}}
$$

Note that $\left\langle\tau_{0}\left(\gamma_{1}\right), \ldots, \tau_{0}\left(\gamma_{n}\right)\right\rangle_{\beta}=\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle_{\beta}$.
Example 3.5. By Example 3.2(1), $\left\langle\tau_{1}(1)\right\rangle_{1}^{\mathbb{P}^{1}}=-2$.
The divisor equation (2) can be generalized to descendant invariants as follows: for $\gamma \in H^{2}(X)$,

$$
\begin{equation*}
\left\langle\tau_{a+1}\left(\gamma_{1}\right), \gamma_{2}, \ldots, \gamma_{n}, \gamma\right\rangle_{\beta}=\left(\int_{\beta} \gamma\right)\left\langle\tau_{a+1}\left(\gamma_{1}\right), \gamma_{2}, \ldots, \gamma_{n}\right\rangle_{\beta}+\left\langle\tau_{a}\left(\gamma_{1} \cup \gamma\right), \gamma_{2}, \ldots, \gamma_{n}\right\rangle_{\beta} \tag{3}
\end{equation*}
$$

We will need another recursion among the descendant invariants called a topological recursion relation. To justify it, recall the recursive structure of the boundary of $\overline{\mathcal{M}}_{0, n}(X, \beta)$: the boundary divisor $D\left(A, \beta_{1} \mid B, \beta_{2}\right)$ can be expressed as the image of the morphism

$$
\overline{\mathcal{M}}_{0, n_{1}+1}\left(X, \beta_{1}\right) \times_{X} \overline{\mathcal{M}}_{0, n_{2}+1}\left(X, \beta_{2}\right) \rightarrow \overline{\mathcal{M}}_{0, n}(X, \beta),
$$

where $n=n_{1}+n_{2}, \beta=\beta_{1}+\beta_{2}$, and the fiber product morphisms send a stable map to the image of the last marked point. Geometrically, this morphism glues 2 maps together along their last marked points.

Lemma 3.3 expresses ψ_{1} as a sum of boundary divisors, and the above recursive structure expresses a boundary divisor as a fiber product of moduli spaces of lower dimension. Informally, integration yields the following:

$$
\begin{equation*}
\left\langle\tau_{a+1}\left(\gamma_{1}\right), \gamma_{2}, \ldots, \gamma_{n}\right\rangle_{\beta}=\sum_{\beta=\beta_{1}+\beta_{2}} \sum_{j=0}^{m}\left\langle\tau_{a}\left(\gamma_{1}\right), T_{j}\right\rangle_{\beta_{1}}\left\langle T^{j}, \gamma_{2}, \ldots, \gamma_{n}\right\rangle_{\beta_{2}} . \tag{4}
\end{equation*}
$$

This is called a topological recursion relation for descendant invariants, since it originates from the topological recursive structure of the boundary of $\overline{\mathcal{M}}_{0, n}(X, \beta)$.

4. Flat sections

4.1. The quantum connection ∇_{z}. We will use a modification of the quantum connection on \mathcal{H} defined by

$$
\nabla_{z}:=z d-\sum_{i=1}^{p} A_{i} d t_{i}
$$

where the A_{i} are defined in Remark 2.2(2) and z is a formal variable. This is not a connection, but is a λ-connection with $\lambda=z$ (recall that a λ-connection $\nabla: \mathcal{E} \rightarrow$ $\mathcal{E} \otimes \Omega_{X}^{1}$ satisfies a deformed Leibniz rule $\nabla(f \sigma)=f \nabla(\sigma)+\lambda d f \otimes \sigma$ for $f \in \mathcal{O}_{X}$ and $\sigma \in \mathcal{E})$.

Curvature of a λ-connection is defined in the same way as for a usual connection, and one can prove flatness of ∇_{z} in the same way as in Lemma 2.4. A section of \mathcal{H} is defined to be an expression

$$
\sigma=\sum_{j=0}^{m} f_{j} T_{j}
$$

with $f_{j} \in \mathcal{O}\left(\mathbb{A}^{p}\right)\left[\left[z, z^{-1}\right]\right]$, and is said to be flat if $\nabla_{z}(\sigma)=0$.
4.2. Flat sections. We will now show that certain sections of \mathcal{H} are flat for ∇_{z}.

Proposition 4.1. Let $\omega \in H^{2}(X, \mathbb{C})$. Then for $0 \leq a \leq m$, the sections of \mathcal{H} defined by

$$
s_{a}=e^{-\omega / z} \cup T_{a}+\sum_{\beta>0} e^{-\int_{\beta} \omega} \sum_{j=0}^{m} \sum_{n=0}^{\infty} z^{-(n+1)}\left\langle\tau_{n}\left(T_{a} \cup e^{-\omega / z}\right), T_{j}\right\rangle_{\beta} T^{j}
$$

form a basis of flat sections for ∇_{z}.
Proof. (sketch; see [2], Proposition 10.2.3 for details) We want to show that

$$
\begin{equation*}
z \frac{\partial s_{a}}{\partial t_{i}}=T_{i} * s_{a} \tag{5}
\end{equation*}
$$

for $0 \leq a \leq m$. Expand out $e^{-\int_{\beta} \omega}$ and $e^{-\omega / z}$, and use the divisor equation for descendant invariants (3) to rewrite s_{a} as

$$
s_{a}=T_{a}+\sum_{\beta>0} \sum_{j=0}^{m} \sum_{n, k=0}^{\infty} z^{-(n+1)} \frac{1}{k!}\left\langle\tau_{n}\left(T_{a}\right), T_{j}, \omega^{(k)}\right\rangle_{\beta} T^{j},
$$

where $\omega^{(k)}$ denotes that ω appears k times in the descendant invariant.
On the LHS of (5), writing $\omega=\sum_{i=1}^{p} t_{i} T_{i}$ and expanding the above descendant invariant as a power series in the t_{i}, one finds that differentiation with respect to t_{i} adds a T_{i} to the above descendant invariant. Multiplication by z changes the index τ_{n} to τ_{n+1}. On the RHS of (5), quantum multiplication gives an additional sum over ordinary 3-point Gromov-Witten invariants. Computing both sides of (5) and comparing the coefficients of T^{j}, we are reduced to showing

$$
\left\langle\tau_{n+1}\left(T_{a}\right), T_{j}, T_{i}, \omega^{(k)}\right\rangle_{\beta}=\sum_{\beta_{1}+\beta_{2}=\beta} \sum_{k_{1}+k_{2}=k}\binom{k}{k_{1}}\left\langle\tau_{n}\left(T_{a}\right), T_{r}, \omega^{\left(k_{1}\right)}\right\rangle_{\beta_{1}}\left\langle T^{r}, T_{j}, T_{i}, \omega^{\left(k_{2}\right)}\right\rangle_{\beta_{2}}
$$

This follows easily from the 3-point topological recursion relation (4) and the divisor equation for descendants (3).

Finally, note that the degree 0 term of s_{a} (as a power series in the t_{i}) is T_{a}. So the s_{a} are linearly independent since their degree 0 terms are.

Example 4.2. As in Example 2.3, for $X=\mathbb{P}^{m}$ we have

$$
\nabla_{z}=z d-\left(\begin{array}{ccccc}
0 & & & & e^{-t} \\
1 & 0 & & & \\
& 1 & \ddots & & \\
& & \ddots & \ddots & \\
& & & 1 & 0
\end{array}\right) d t
$$

Therefore, a section $\sum_{j=0}^{m} f_{j}\left(t, z, z^{-1}\right) T_{j}$ of \mathcal{H} is flat if and only if the f_{j} satisfy the following system of 1st order linear PDEs (known as the quantum differential equations):

$$
\begin{align*}
& z \frac{d f_{m}}{d t}=f_{m-1} \\
& \vdots \tag{6}\\
& z \frac{d f_{1}}{d t}=f_{0} \\
& z \frac{d f_{0}}{d t}=e^{-t} f_{m}
\end{align*}
$$

Define

$$
\mathcal{D}=\left(z \frac{d}{d t}\right)^{m+1}-e^{-t}
$$

By the general theory of differential equations (see e.g. [1], III, 1.1.1), $\mathcal{D} f=0$ if and only if $f_{j}:=(z d / d t)^{j} f, j=0, \ldots, m$, solve the system (6).

We can solve the equation $\mathcal{D} f=0$ explicitly as follows. Define

$$
S=\sum_{d \geq 0} \frac{e^{-(H / z+d) t}}{(H+z)^{m+1}(H+2 z)^{m+1} \ldots(H+d z)^{m+1}}
$$

and expand $S=S_{m}+S_{m-1} H+\ldots+S_{0} H^{m}$ with $S_{a} \in \mathbb{C}\left[\left[e^{-t}, z^{-1}\right]\right]$. Then it is easy to check that $\mathcal{D}\left(S_{a}\right)=0$ for $a=0, \ldots, m$.

Consider the matrix $M \in \operatorname{Mat}_{m+1}\left(\mathbb{C}\left[\left[e^{-t}, z^{-1}\right]\right]\right)$ whose a th column is given by $(z d / d t)^{j} S_{a}, j=0, \ldots, m$. It is easy to check that $M=\mathrm{id}$ in degree 0 . So by the above discussion, M defines a basis of solutions to the system (6).

On the other hand, by Proposition 4.1, the matrix $\Psi \in \operatorname{Mat}_{m+1}\left(\mathbb{C}\left[\left[e^{-t}, z^{-1}\right]\right]\right)$ whose a th column is the components of s_{a} also defines a basis of solutions to the system (6). As noted at the end of the proof of Proposition $4.1, \Psi=\mathrm{id}$ in degree 0 . So by the general theory of differential equations (see e.g. [1], III, proof of 1.4.1), we conclude that $\Psi=M$.

Let us compute the last rows of these matrices explicitly in the case of \mathbb{P}^{1}. Since $H^{2}=0$, we have

$$
\frac{1}{(H+k z)^{2}}=\frac{1}{\substack{k^{2} z^{2} \\ 9}}\left(1-\frac{2 H}{k z}\right)
$$

for $k=1, \ldots, d$. Writing $S=S_{1}+S_{0} H$, we can calculate that

$$
\begin{aligned}
& S_{0}=\sum_{d \geq 0}\left(-\frac{2}{(d!)^{2}}\left(1+\frac{1}{2}+\cdots+\frac{1}{d}\right)-t \frac{1}{(d!)^{2}}\right) e^{-d t} z^{-(2 d+1)} \\
& S_{1}=\sum_{d \geq 0} \frac{1}{(d!)^{2}} e^{-d t} z^{-2 d}
\end{aligned}
$$

On the other side, write $s_{0}=A_{0}+B_{0} H$ and $s_{1}=A_{1}+B_{1} H$. By Proposition 4.1, we have

$$
\begin{aligned}
& B_{0}=-t z^{-1}+\sum_{d>0} e^{-d t} \sum_{n=0}^{\infty} z^{-(n+1)}\left\langle\tau_{n}\left(1-t H z^{-1}\right), 1\right\rangle_{d} \\
& B_{1}=1+\sum_{d>0} e^{-d t} \sum_{n=0}^{\infty} z^{-(n+1)}\left\langle\tau_{n}(H), 1\right\rangle_{d}
\end{aligned}
$$

By $(1), \operatorname{dim} \overline{\mathcal{M}}_{0,2}\left(\mathbb{P}^{1}, d\right)=2 d$. Thus, the only non-zero descendant invariants in B_{0} occur for $n=2 d$ or $2 d-1$, and the only non-zero descendant invariant in B_{1} occurs for $n=2 d-1$. So the above expressions simplify to

$$
\begin{aligned}
& B_{0}=-t z^{-1}+\sum_{d>0}\left(\left\langle\tau_{2 d}(1), 1\right\rangle_{d}-t\left\langle\tau_{2 d-1}(H), 1\right\rangle_{d}\right) e^{-d t} z^{-(2 d+1)} \\
& B_{1}=1+\sum_{d>0}\left\langle\tau_{2 d-1}(H), 1\right\rangle_{d} e^{-d t} z^{-2 d}
\end{aligned}
$$

The equality of solutions $\Psi=M$ to the quantum differential equations is

$$
\left(\begin{array}{cc}
A_{0} & A_{1} \\
B_{0} & B_{1}
\end{array}\right)=\left(\begin{array}{cc}
z \frac{d}{d t} S_{0} & z \frac{d}{d t} S_{1} \\
S_{0} & S_{1}
\end{array}\right)
$$

Equating coefficients of powers of e^{-t} and z^{-1}, the equalities $B_{0}=S_{0}$ and $B_{1}=S_{1}$ yield:

$$
\begin{aligned}
& \left\langle\tau_{2 d}(1), 1\right\rangle_{d}=-\frac{2}{(d!)^{2}}\left(1+\frac{1}{2}+\cdots+\frac{1}{d}\right) \\
& \left\langle\tau_{2 d-1}(H), 1\right\rangle_{d}=\frac{1}{(d!)^{2}}
\end{aligned}
$$

These 2-point descendant invariants can also be computed directly by induction without any reference to the quantum connection (see [2], Example 10.1.3.1). The quantum connection organizes them as coefficients of its flat sections.

Finally, returning to the general case $X=\mathbb{P}^{m}$, the last rows of M and Ψ determine cohomology classes on \mathbb{P}^{m} which are usually called the I-function and J-function of
\mathbb{P}^{m}, respectively, in the literature:

$$
\begin{aligned}
I_{\mathbb{P}^{m}} & :=S=\sum_{a=0}^{m} S_{a} H^{m-a} \\
J_{\mathbb{P}^{m}} & :=\sum_{a=0}^{m}\left(\int_{\mathbb{P}^{m}} s_{a}\right) H^{m-a} .
\end{aligned}
$$

We have in particular shown that $I_{\mathbb{P}^{m}}=J_{\mathbb{P}^{m}}$, which is Givental's formulation of mirror symmetry for \mathbb{P}^{m}.

References

[1] A. Borel et al. Algebraic D-Modules, Academic Press (1987)
[2] D. Cox and S. Katz. Mirror Symmetry and Algebraic Geometry, AMS (1999)
[3] M. Guest. From Quantum Cohomology to Integrable Systems, Oxford University Press (2008)
[4] K. Hori et al. Mirror Symmetry, Clay Mathematics Monographs, v. 1 (2003)

