LECTURE 4: SOERGEL'S THEOREM AND SOERGEL BIMODULES

DMYTRO MATVIEIEVSKYI

ABSTRACT. These are notes for a talk given at the MIT-Northeastern Graduate Student Seminar on category \mathcal{O} and Soergel bimodules, Fall 2017.

Contents

1.	Goals and structure of the talk	1
2.	Soergel V -functor	1
3.	Endomorphisms of P_{min}	2
3.1.	. \mathcal{O}_0 is highest weight category	2
3.2.	. Properties of P_{min}	2
3.3.	. Properties of C	3
3.4.	. Strategy of proof	3
3.5.	. Extended translation functors	4
3.6.	. Properties of \mathcal{F} and its adjoints	6
3.7.	. Completion of the proof	7
References		8

1. Goals and structure of the talk

The main goal of this talk is to introduce Soergel's V-functor and study its properties. The exposition will be as follows. In Section 2 we define Soergel's V-functor and state three theorems of Soergel. In Section 3 we will prove the first of them. For this purpose we will construct extended translation functors that naturally extend translation functor to bigger categories.

2. Soergel V-functor

Let \mathfrak{g} be a semisimple Lie algebra, W its Weyl group and $w_0 \in W$ the longest element. By $P_{min} := P(w_0 \cdot 0)$ we denote the projective cover of $L_{min} := L(w_0 \cdot 0)$.

Definition 2.1. The Soergel \mathbb{V} -functor is a functor between the principal block \mathcal{O}_0 and the category of right modules over $\operatorname{End}(P_{\min})$ given by $\mathbb{V}(\bullet) = \operatorname{Hom}(P_{\min}, \bullet)$.

We set $C := \mathbb{C}[\mathfrak{h}]/(\mathbb{C}[\mathfrak{h}]^W_+)$ where $\mathbb{C}[\mathfrak{h}]^W_+ \subset \mathbb{C}[\mathfrak{h}]^W$ is the ideal of all elements without constant term and $(\mathbb{C}[\mathfrak{h}]^W_+) = \mathbb{C}[\mathfrak{h}]\mathbb{C}[\mathfrak{h}]^W_+$. This is called the coinvariant algebra. The main goal of the talk is to prove some properties of \mathbb{V} .

Theorem 2.2. End_{\mathcal{O}}(P_{min}) $\simeq C$.

Theorem 2.3. \mathbb{V} is fully faithful on projectives.

Theorem 2.4. $\mathbb{V}(\mathcal{P}_i \bullet) \simeq \mathbb{V}(\bullet) \underset{\mathbb{C}[\mathfrak{h}]^{s_i}}{\otimes} \mathbb{C}[\mathfrak{h}].$

DMYTRO MATVIEIEVSKYI

3. Endomorphisms of P_{min}

In this section we prove that $\operatorname{End}_{\mathcal{O}}(P_{\min}) = C$.

Before we proceed to the proof we need to observe some properties of \mathcal{O}_0 , P_{min} and C. This is done in next three subsections.

3.1. \mathcal{O}_0 is a highest weight category. Recall that we have a Bruhat order on the Weyl group W. For an element $w \in W$ we say that $\underline{w} = (s_{i_1}, s_{i_2}, \ldots, s_{i_k})$ is an expression of w if $w = s_{i_1}s_{i_2}\ldots s_{i_k}$. The minimal number l(w) of elements in the expression of w is called length of w. We say that the expression \underline{w} is reduced if l(w) = k.

Definition 3.1. Consider $w_1, w_2 \in W$. We say $w_1 \preceq w_2$ if there are reduced expressions $\underline{w_1}$ of w_1 and w_2 of w_2 such that w_1 is a subexpression of w_2 .

In this subsection we will prove that the principal block \mathcal{O}_0 is a highest weight category. Let us recall the definition of a highest weight category from Daniil's talk.

Definition 3.2. Consider an abelian category C which has a finite number of simple objects, enough projectives and every object has finite length (equivalently $C \simeq A$ -mod, where A is a finite dimensional associative algebra). The highest weight structure on such a category, is a partial order \preceq on the set of simple objects $\operatorname{Irr}(C)$ and the set of standard objects Δ_L , $L \in \operatorname{Irr}(C)$ such that: • $\operatorname{Hom}_C(\Delta_L, \Delta_{L'}) \neq 0 \Rightarrow L \prec L'$ and $\operatorname{End}_C(\Delta_L) = \mathbb{C}$.

• The projective cover P_L of L admits an epimorphism onto Δ_L and $\operatorname{Ker}(P_L \to \Delta_L)$ admits a filtration by $\Delta_{L'}$ with $L \prec L'$.

Proposition 3.3. The category \mathcal{O}_0 is a highest weight category with respect to the opposite Bruhat order.

Proof. Chris has proved that $P(w \cdot 0)$ is a direct summand in $\mathcal{P}_k \dots \mathcal{P}_1 \Delta(0)$. Note that all standards occurring in the bigger projective have labels $w' \preceq w$ in the Bruhat order and w appears only once. So $K := \text{Ker}(P(w \cdot 0) \rightarrow \Delta(w \cdot 0))$ is filtered with $\Delta(w' \cdot 0)$ for $w' \prec w$.

It remains to show that $\operatorname{Hom}(\Delta(w \cdot 0), \Delta(w' \cdot 0) \neq 0 \Rightarrow w' \leq w$. Note that in the opposite direction it was proved in the first talk of the seminar. If $\operatorname{Hom}(\Delta(w \cdot 0), \Delta(w' \cdot 0) \neq 0$ then the induced map on $L(w \cdot 0)$ is non-trivial, so $[\Delta(w' \cdot 0) : L(w \cdot 0)] \neq 0$. By BGG reciprocity $[\Delta(w' \cdot 0) : L(w \cdot 0)] = (P(w \cdot 0) : \Delta(w' \cdot 0))$, so $w' \leq w$.

3.2. Properties of P_{min} . For the longest element $w_0 \in W$ we have the corresponding minimal element $\lambda_{min} := w_0 \cdot \lambda$. For that element we have $\Delta_{min} := \Delta(\lambda_{min}) \simeq L_{min} := L(\lambda_{min}) \simeq \nabla_{min} :=$ $\nabla(\lambda_{min})$. Let P_{min} be a projective cover of Δ_{min} . In his talk Chris defined translation functors $T_{\lambda \to \mu}$. In this talk we will be especially interested in translations to the most singular case when $\mu = -\rho$. Let us set a notation \mathcal{O}_{λ} for $\mathcal{O}_{\chi_{\lambda}}$. Note that every object in $\mathcal{O}_{-\rho}$ is a direct sum of some copies of $\Delta(-\rho) = L(-\rho)$, so $\mathcal{O}_{-\rho}$ is equivalent to the category of vector spaces. We set $T := T_{\lambda \to -\rho}$ and $T^* := T_{-\rho \to \lambda}$. These functors are exact and biadjoint. We want to find a description of the projective cover P_{min} using translations functors.

Proposition 3.4. $P_{min} = T^*(\Delta(-\rho)).$

Proof. $\Delta(-\rho)$ is projective object in $\mathcal{O}_{-\rho}$ and the functor T^* is left adjoint to the exact functor T. Therefore $T^*(\Delta(-\rho))$ is projective. It is enough to show that dim Hom $(T^*(\Delta(-\rho)), L) = 1$ if $L = L_{min}$ and 0 else.

Let us compute $\operatorname{Hom}(T^*(\Delta(-\rho)), L)$. Since T^* is left adjoint to T we have $\operatorname{Hom}(T^*(\Delta(-\rho)), L) \simeq \operatorname{Hom}(\Delta(-\rho), T(L))$. From Chris's talk we know that $T(L_{min}) \simeq \Delta(-\rho)$ and T(L) = 0 for any other simple L that finishes the proof.

Remark 3.5. $\Delta(-\rho)$ is self-dual object in the category $\mathcal{O}_{-\rho}$ and T^* commutes with duality. Analogous to Proposition 3.4 statement shows that $P_{min} = T^*(\Delta(-\rho))$ is the injective envelope of Δ_{min} . In fact, there are no other projective-injective elements in \mathcal{O}_{λ} .

Corollary 3.6. $\mathbb{V}(\Delta(w \cdot 0))$ is a one-dimensional $\operatorname{End}(P_{\min})$ -module for any $w \in W$.

We will show later that such module is unique.

Proof. $\mathbb{V}(\Delta(w \cdot 0)) = \operatorname{Hom}_{\mathcal{O}_0}(T^*\Delta(-\rho), \Delta(w \cdot 0)) = \operatorname{Hom}_{\mathcal{O}_{-\rho}}(\Delta(-\rho), T\Delta(w \cdot 0))$. Chris has proved in his talk that $T\Delta(w \cdot 0) = \Delta(-\rho)$. Therefore dim $\mathbb{V}(\Delta(w \cdot 0)) = \dim \operatorname{Hom}_{\mathcal{O}_{-\rho}}(\Delta(-\rho), \Delta(-\rho)) = 1$. \Box

Recall from Daniil's talk the definition of a standard filtration.

Definition 3.7. An object $M \in \mathcal{O}$ is standardly filtered if there is a chain of submodules $0 = F_0M \subset F_1M \subset F_2M \subset \ldots \subset F_nM = M$ such that each $F_{i+1}M / F_iM$ is isomorphic to a Verma module.

Proposition 3.8. Every Verma module $\Delta(w \cdot 0)$ appears in a standard filtration of P_{min} exactly one time.

Proof. By BGG reciprocity we have

 $(P_{min} : \Delta(w \cdot 0)) = [\Delta(w \cdot 0) : L_{min}] = [\Delta(w \cdot 0) : \Delta_{min}] = 1$ where the last equality was proved in the proof of Proposition 5 from the first lecture.

3.3. Properties of C.

Lemma 3.9. The following are true.

- (1) C is a local commutative algebra, in particular, it has a unique irreducible representation (we will just write \mathbb{C} for that irreducible representation).
- (2) $C \cong H^*(G/B, \mathbb{C}).$
- (3) There is a nonzero element $\omega \in C$ such that for any other element $f_1 \in C$, there is $f_2 \in C$ with $f_1 f_2 = \omega$.
- (4) The socle (=the maximal semisimple submodule) of the regular C-module C is simple, equivalently, by (a), dim Hom(\mathbb{C}, C) = 1.
- (5) We have an isomorphism $C \cong C^*$ of C-modules. In particular, C is an injective C-module.

Proof. (1) is clear. To prove (2), let us recall that $H^*(G/B, \mathbb{C})$ is generated by $H^2(G/B, \mathbb{C}) \cong \mathfrak{h}^*$ (in particular, there's no odd cohomology and the algebra $H^*(G/B, \mathbb{C})$ is honestly commutative). So we have an epimorphism $\mathbb{C}[\mathfrak{h}] \twoheadrightarrow H^*(G/B, \mathbb{C})$. The classical fact is that the kernel is generated by $\mathbb{C}[\mathfrak{h}]_+^W$ so $C \xrightarrow{\sim} H^*(G/B, \mathbb{C})$.

Let us prove (3). We claim that this holds for the cohomology of any compact orientable manifold M. Indeed, dim $H^{top}(M, \mathbb{C}) = 1$, let us write ω for the generator. The pairing $(\alpha, \beta) := \int_M \alpha \wedge \beta$ is nondegenerate on $H^*(M, \mathbb{C})$. (3) follows.

By (3) any nonzero C-submodule of C contains ω . This implies (4).

Let us prove (5). Consider the linear isomorphism $C \xrightarrow{\sim} C^*$ given by (\cdot, \cdot) . Note that the form (\cdot, \cdot) is invariant: $(\gamma \alpha, \beta) = (\alpha, \gamma \beta)$. So the map $C \to C^*$ is C-linear.

3.4. Strategy of proof. Our strategy of proving $\operatorname{End}_{\mathcal{O}}(P_{min}) = C$ is as follows.

1) We define a functor (an extended translation functor) $T_{0\to-\rho}: \mathcal{O}_0 \to C$ -mod with the property that frg $\circ \tilde{T}_{0\to-\rho} = T_{0\to-\rho}$, where $T_{0\to-\rho}: \mathcal{O}_0 \to \mathcal{O}_{-\rho}$ is the usual translation functor, and frg : C-mod \to Vect is the forgetful functor (recall from the beginning of Subsection 3.2 that $\mathcal{O}_{-\rho}$ is the semisimple category with a single simple object, so it is the category Vect of vector spaces).

2) Since $\mathcal{F} := T_{0 \to -\rho}$ is an exact functor between categories that are equivalent to the categories of modules over finite dimensional algebras, it admits left and right adjoint functors to be denoted

by $\mathcal{F}^!, \mathcal{F}^*$. We will show that $P_{min} = \mathcal{F}^!(C) = \mathcal{F}^*(C)$. Therefore we have a natural map $C = \operatorname{End}_{C\operatorname{-mod}}(C, C) \to \operatorname{End}_{\mathcal{O}}(\mathcal{F}^*(C), \mathcal{F}^*(C)) = \operatorname{End}_{\mathcal{O}}(P_{min})$.

3) We will establish an isomorphism $C \xrightarrow{\sim} \operatorname{End}(P_{min})$ by showing that $\mathcal{F}(P_{min}) = C$. A key ingredient for the latter is to show that $\mathcal{F}^*(\mathbb{C}) = \Delta(0)$.

3.5. Extended translation functors. The functor $\mathcal{F} = T_{0 \to -\rho}$ is a special case of more general functors known as the extended translation functors.

Consider the dotted action of W on \mathfrak{h} . We set $\tilde{U} := U(\mathfrak{g}) \otimes_{\mathbb{C}[\mathfrak{h}]^W} \mathbb{C}[\mathfrak{h}]$ with the action of $\mathbb{C}[\mathfrak{h}]^W$ on $U(\mathfrak{g})$ by the Harish-Chandra isomorphism. Let J_{λ} be the maximal ideal corresponding to λ in $\mathbb{C}[\mathfrak{h}]$ and $I_{|\lambda|}$ the maximal ideal corresponding to $W \cdot \lambda$ in $\mathbb{C}[\mathfrak{h}]^W = \mathbb{C}[\mathfrak{h}/W]$. We define \tilde{U} -mod_{λ} as the category of finitely generated \tilde{U} -modules M such that $J_{\lambda}^n M = 0$ for n big enough. Let $\tilde{\mathcal{O}}_{\lambda}$ be a subcategory of \tilde{U} -mod_{λ} consisting of \tilde{U} -modules M such that $M \in \mathcal{O}_{\lambda}$ considered as a $U(\mathfrak{g})$ -module. The goal of this subsection is to construct and study an extended translation functor $\tilde{T}_{\lambda \to \mu} : \tilde{\mathcal{O}}_{\lambda} \to \tilde{\mathcal{O}}_{\mu}$.

Let $W_{\lambda} \subset W$ be a stabilizer of λ . We consider the algebra of W_{λ} -invariants $\tilde{U}^{W_{\lambda}} := U(\mathfrak{g}) \otimes_{\mathbb{C}[\mathfrak{h}]} W$ $\mathbb{C}[\mathfrak{h}]^{W_{\lambda}}$ and $J_{\lambda}^{W_{\lambda}} := J_{\lambda} \cap \mathbb{C}[\mathfrak{h}]^{W_{\lambda}}$. Let $\tilde{U}^{W_{\lambda}}$ -mod_{\lambda} be a category of finitely generated $\tilde{U}^{W_{\lambda}}$ -modules M such that $(J_{\lambda}^{W_{\lambda}})^{n}M = 0$ for n big enough. We set $\tilde{\mathcal{O}_{\lambda}}^{W_{\lambda}}$ be a subcategory of $\tilde{U}^{W_{\lambda}}$ -mod_{\lambda} consisting of $\tilde{U}^{W_{\lambda}}$ -modules M such that $M \in \mathcal{O}_{\lambda}$ considered as a $U(\mathfrak{g})$ -module. We have natural restriction functors $\operatorname{Res}_{\lambda} : \tilde{\mathcal{O}}_{\lambda} \to \mathcal{O}_{\lambda}$ and $\operatorname{Res}_{\lambda}^{W_{\lambda}} : \tilde{\mathcal{O}}_{\lambda}^{W_{\lambda}} \to \mathcal{O}_{\lambda}$.

Proposition 3.10. The functor $\operatorname{Res}_{\lambda}^{W_{\lambda}}$ is an equivalence of categories.

Proof. The natural map $\mathfrak{h} \to \mathfrak{h}/W$ factors through $\mathfrak{h} \to \mathfrak{h}/W_{\lambda} \to \mathfrak{h}/W$. The map $\mathfrak{h}/W_{\lambda} \to \mathfrak{h}/W$ is unramified, so the formal neigbourhood of a point $W \cdot \lambda \in \mathfrak{h}/W$ is canonically isomorphic to a formal neighborhood of a point $W_{\lambda} \cdot \lambda \in \mathfrak{h}/W_{\lambda}$. In other words, $\lim_{\lambda \to 0} \mathbb{C}[\mathfrak{h}]^W/I^n_{|\lambda|} \simeq \lim_{\lambda \to 0} \mathbb{C}[\mathfrak{h}]^{W_{\lambda}}/(J^{W_{\lambda}}_{\lambda})^n$. Hence on any $M \in \mathcal{O}_{\lambda}$ we have an action of $\lim_{\lambda \to 0} \mathbb{C}[\mathfrak{h}]^{W_{\lambda}}/(J^{W_{\lambda}}_{\lambda})^n$ that makes M an object of $\tilde{\mathcal{O}}^{W_{\lambda}}_{\lambda}$.

Remark 3.11. The functor $\operatorname{Res}_{\lambda}(\bullet)$ has a natural left adjoint $\operatorname{Ind}_{\mathbb{C}[\mathfrak{h}]^{W_{\lambda}}}^{\mathbb{C}[\mathfrak{h}]}(\bullet)$ and a natural right adjoint $\operatorname{Hom}_{\mathbb{C}[\mathfrak{h}]^{W_{\lambda}}}(\mathbb{C}[\mathfrak{h}], \bullet)$.

Corollary 3.12. For $\lambda + \rho$ regular the functor $\operatorname{Res}_{\lambda}$ gives an equivalence of categories $\tilde{\mathcal{O}}_{\lambda}$ and \mathcal{O}_{λ} .

Lemma 3.13. For the most singular case we have $\tilde{\mathcal{O}}_{-\rho} \simeq C$ -mod.

Proof. Every object $M \in \mathcal{O}_{-\rho}$ is of form $M \simeq \Delta(-\rho) \otimes V$. Therefore the action of the central subalgebra $Z(U(\mathfrak{g})) = \mathbb{C}[\mathfrak{h}]^W$ on M factors through $\mathbb{C}[\mathfrak{h}]^W \to \mathbb{C}[\mathfrak{h}]^W/\mathbb{C}[\mathfrak{h}]^W_+ = \mathbb{C}$ and $\tilde{\mathcal{O}}_{-\rho}$ consists of $U_{-\rho} \otimes C$ -modules from the category $\mathcal{O}_{-\rho}$. Therefore we have the functor C-mod $\to \tilde{\mathcal{O}}_{-\rho}$ given by $\Delta(-\rho) \otimes \bullet$ and the functor $\tilde{\mathcal{O}}_{-\rho} \to C$ -mod given by $\operatorname{Hom}_{U_{-\rho}}(\Delta(-\rho), \bullet)$. It is easy to check that these two functors are quasi-inverse.

Therefore we have a translation functor $T_{\lambda \to \mu} : \tilde{\mathcal{O}}_{\lambda}^{W_{\lambda}} \to \tilde{\mathcal{O}}_{\mu}^{W_{\mu}}$. For integral λ, μ such that $\lambda + \rho$ and $\mu + \rho$ are dominant and $W_{\lambda} \subset W_{\mu}$ we want to extend it to the translation functor $\tilde{T}_{\lambda \to \mu} : \tilde{\mathcal{O}}_{\lambda} \to \tilde{\mathcal{O}}_{\mu}$. We claim that for $M \in \tilde{\mathcal{O}}_{\lambda}$ we have a natural structure of a \tilde{U} -module from the category $\tilde{\mathcal{O}}_{\mu}$ on $N := T_{\lambda \to \mu} \operatorname{Res}(M)$ constructed in the following way. We already have an action of $\tilde{U}_{\mu}^{W_{\mu}}$. Let $\rho_{\mu-\lambda}$ be an endomorphism of $\mathbb{C}[\mathfrak{h}]$ induced by the map $\rho_{\mu-\lambda}(x) = x + \mu - \lambda$ for $x \in \mathfrak{h}$. For $M \in \tilde{\mathcal{O}}_{\lambda}$ we have a natural action of $\mathbb{C}[\mathfrak{h}]$ by \tilde{U} -module endomorphisms on $\operatorname{Res}(M)$ that factors through $\mathbb{C}[\mathfrak{h}]/J_{\lambda}^n$ for n large enough. By the functoriality we have an action of $\mathbb{C}[\mathfrak{h}]$ on $N = T_{\lambda \to \mu} \operatorname{Res}(M)$. We twist this action with $\rho_{\mu-\lambda}$, so it factors through $\mathbb{C}[\mathfrak{h}]/J_{\mu}^n$. Let us denote this action as z * m. **Example 3.14.** Let $\mathfrak{g} = \mathfrak{sl}_2$. Let x be the generator of $\mathbb{C}[\mathfrak{h}]$. We are interested in the action of $\mathbb{C}[\mathfrak{h}]$ on P(-2) and induced action on $\tilde{T}_{0\to-1}(P(-2))$. Let us choose a basis of P(-2), for which the weight diagram is as below.

The Casimir element $x^2 + 2x \in \mathbb{C}[\mathfrak{h}]^W$ acts on each v_i by 0 and sends w_{-2k} to $2v_{-2k}$. Then x acts by moving the diagram to the left, i.e. $x(v_k) = 0$ and $x(w_k) = v_k$. $\tilde{T}_{0 \to -1}(P(-2)) \simeq \Delta(-1)^2$ as $U(\mathfrak{sl}_2)$ -module. The action $T_{0 \to -1}(x)$ where we consider x as endomorphism of P(-2) is given by the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. After twisting with ρ_{-1} we get a matrix $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ that corresponds to the *-action of x. In particular we get $\operatorname{End}(P(-2)) \simeq \operatorname{End}(\tilde{T}_{0 \to -1}(P(-2))) \simeq \mathbb{C}[x]/(x^2)$ and the first isomorphism is induced by $\tilde{T}_{0 \to -1}$. This is an easy case of Theorem 2.2.

Proposition 3.15. The two actions of $\mathbb{C}[\mathfrak{h}]^W$ on $N = T_{\lambda \to \mu} \operatorname{Res}_{\lambda}(M)$ (one coming from the shifted $\mathbb{C}[\mathfrak{h}]$ -action and one coming from the central inclusion $\mathbb{C}[\mathfrak{h}]^W \to U(\mathfrak{g})$) coincide.

By Proposition 3.10, an equivalent formulation of this proposition is that the actions of $\mathbb{C}[\mathfrak{h}]^{W_{\mu}} \subset \mathbb{C}[\mathfrak{h}]$ and $\mathbb{C}[\mathfrak{h}]^{W_{\mu}} \subset \tilde{U}^{W_{\mu}}$ coincide.

Proof. The proof is in several steps. Analogously to the proof of Theorem 4.7 in Chris's notes we may assume that $\lambda - \mu$ is dominant.

Step 1. The category \mathcal{O}_{λ} has enough projectives, the indecomposable ones are $\mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{W_{\lambda}}} P(\lambda')$ for $\lambda' \in W \cdot \lambda$. It is enough to prove the statement for a projective M since any object in $\tilde{\mathcal{O}}_{\lambda}$ is covered by a projective. We will consider the projectives of the form $\mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{W_{\lambda}}} \operatorname{pr}_{\lambda}(V \otimes \Delta(\lambda)) \in \tilde{\mathcal{O}}_{\lambda}$.

For these objects M the proof is by a deformation argument – we reduce the proof to the case when relevant infinitesimal blocks of \mathcal{O} are semisimple by deforming the parameter λ .

Step 2. Pick a very small positive number ϵ and consider $z \in \mathbb{C}$ with $|z| < \epsilon$. Consider $\lambda_z := \lambda + z(\lambda + \rho)$. For $z \neq 0$, we have $W_{\lambda_z} = W_{\lambda}$ and different elements in $W \cdot \lambda_z$ are non-comparable with respect to the standard order \leq . In particular, the infinitesimal block \mathcal{O}_{λ_z} is semisimple with $|W/W_{\lambda}|$ objects.

Step 3. Let us set a new notation $\overline{\mathrm{pr}}_{\lambda_z}(V) = \bigoplus_{\nu_i} \mathrm{pr}_{\lambda_z + \nu_i}(V)$ where the sum is taken over all ν_i such that $\lambda + \nu_i \in W \cdot \lambda$. In other words, $\overline{\mathrm{pr}}_{\lambda_z}$ projects to infinitesimal blocks corresponding to the

central characters of $\lambda_z + \nu$ (where ν is a weight of V) that are close to the central character of λ . Now observe that $\overline{\mathrm{pr}}_{\lambda_z}(V \otimes \Delta(\lambda_z))$ is a flat deformation of $\mathrm{pr}_{\lambda}(V \otimes \Delta(\lambda))$ (the Verma subquotients that survive in $\overline{\mathrm{pr}}_{\lambda_z}(V \otimes \Delta(\lambda_z))$ and in $\mathrm{pr}_{\lambda}(V \otimes \Delta(\lambda))$ are labeled by the same weights).

that survive in $\overline{\mathrm{pr}}_{\lambda_z}(V \otimes \Delta(\lambda_z))$ and in $\mathrm{pr}_{\lambda}(V \otimes \Delta(\lambda))$ are labeled by the same weights). Step 4. Set $\mu_z = \lambda_z + \mu - \lambda$. Let $\overline{\mathrm{pr}}_{\mu_z} = \bigoplus_{\nu_i} \mathrm{pr}_{\lambda_z + \nu_i}(V)$ where ν_i are as in Step 3. Again, we note

DMYTRO MATVIEIEVSKYI

(3.1)
$$\overline{\mathrm{pr}}_{\mu_z}(L(\lambda-\mu)^*\otimes\mathbb{C}[\mathfrak{h}]\otimes_{\mathbb{C}[\mathfrak{h}]^{W_\lambda}}\overline{\mathrm{pr}}_{\lambda_z}(V\otimes\Delta(\lambda_z)))$$

is a flat deformation of

(3.2) $T_{\lambda \to \mu}[\mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{W_{\lambda}}} \operatorname{pr}_{\lambda}(V \otimes \Delta(\lambda))] = \operatorname{pr}_{\mu}[L(\lambda - \mu)^* \otimes \mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{W_{\lambda}}} \operatorname{pr}_{\lambda}(V \otimes \Delta(\lambda))].$

This is for the same reason as in Step 3. It follows that it is enough prove the coincidence of the two actions of $\mathbb{C}[\mathfrak{h}]^W$ on the deformed module 3.1 (for $z \neq 0$) (then we will be done by continuity).

Step 5. The point of this reduction is that $\overline{\mathrm{pr}}_{\lambda_z}(V \otimes \Delta(\lambda_z))$ splits into the sum of Vermas (=simples). Pick $w \in W$. It is enough to prove the coincidence of the actions on

(3.3)
$$\overline{\mathrm{pr}}_{\mu_z}(L(\lambda-\mu)^*\otimes\mathbb{C}[\mathfrak{h}]\otimes_{\mathbb{C}[\mathfrak{h}]^{W_\lambda}}\Delta(w\cdot\lambda_z)).$$

As in Step 3, this object is $\mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{W_{\lambda}}} \Delta(w \cdot \mu_z)$. So $\mathbb{C}[\mathfrak{h}]^W \subset U(\mathfrak{g})$ acts on (3.3) via μ_z . On the other hand, $\mathbb{C}[\mathfrak{h}]^W \subset \mathbb{C}[\mathfrak{h}]$ acts on $\mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{W_{\lambda}}} \Delta(w \cdot \lambda_z)$ via λ_z and hence it acts on (3.3) by μ_z as well.

From the construction we get that the following diagram is commutative.

$$\begin{array}{c} \tilde{\mathcal{O}}_{\lambda} \xrightarrow{\tilde{T}_{\lambda \to \mu}} \tilde{\mathcal{O}}_{\mu} \\ \downarrow Res_{\lambda} & \downarrow Res_{\mu} \\ \mathcal{O}_{\lambda} \xrightarrow{T_{\lambda \to \mu}} \mathcal{O}_{\mu} \end{array}$$

Extended translation functors are transitive in the following sense: $\tilde{T}_{\lambda \to \nu} = \tilde{T}_{\mu \to \nu} \circ \tilde{T}_{\lambda \to \mu}$.

Remark 3.16. We have a generalization of Example 3.14 to the case when μ is on the single wall $\ker \alpha_i^{\vee}$. We set $\tilde{\Delta}_{w,i} = T_{\mu\to 0}\Delta(w\cdot\mu)$. Suppose that $l(ws_i) < l(w)$, so we have an exact sequence $0 \to \Delta(ws_i \cdot 0) \to \tilde{\Delta}_{w,i} \to \Delta(w \cdot 0) \to 0$. Analogously to Example 3.14 the functor $\tilde{T}_{0\to\mu}$ gives an isomorphism $\operatorname{End}(\tilde{\Delta}_{w,i}) \simeq \operatorname{End}(\tilde{T}_{0\to\mu}(\tilde{\Delta}_{w,i}))$ where $\tilde{T}_{0\to\mu}(\tilde{\Delta}_{w,i}) = \mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{s_i}} \Delta(w\cdot\mu)$, so the endomorphism algebra is $\mathbb{C}[x]/(x^2)$. In particular, we have that the root $\alpha_i \in \mathbb{C}[\mathfrak{h}]_+$ acts nontrivially on $\tilde{\Delta}_{w,i}$. This action kills the bottom Verma $\Delta(ws_i \cdot 0)$ and sends $\Delta(w \cdot 0)$ to $\Delta(ws_i \cdot 0)$ by the unique non-trivial homomorphism.

3.6. Properties of \mathcal{F} and its adjoints. Let us write \mathcal{F} for $\tilde{T}_{0\to-\rho}$. This is a functor $\mathcal{O}_0 \to \tilde{\mathcal{O}}_{-\rho} \simeq C$ -mod. As we have pointed out already, it admits a left adjoint $\mathcal{F}^!$ (if A, B are finite dimensional algebras, then any exact functor $\mathcal{F} : A$ -mod $\to B$ -mod has the form $\operatorname{Hom}_A(P, \bullet)$, where P is a projective A-module with a homomorphism $B \to \operatorname{End}_A(P)^{opp}$, then the left adjoint is $P \otimes_B \bullet$). By a dual argument, \mathcal{F} also admits a right adjoint, \mathcal{F}^* .

Lemma 3.17. The following are true:

- (1) $\mathcal{F}(L(w \cdot 0)) = 0$ if $w \neq w_0$ (the longest element) and is the unique simple C-module \mathbb{C} , else.
- (2) $\mathcal{F}(\Delta(w \cdot 0)) = \mathbb{C}$ for all $w \in W$.
- (3) $\mathcal{F}^!(C) = P_{min}$.
- (4) $\mathcal{F}^*(C) = P_{min}$.

Proof. By the construction, $\operatorname{frg} \circ \mathcal{F} = T$, so (1) and (2) follow from the properties of T from Chris's talk.

To prove (3) we note that $T^* = T^! = \mathcal{F}^! \circ \text{Res}^!$. We have $\text{Res}^!(\mathbb{C}) = C$ because C is projective cover of \mathbb{C} . Indeed, $\text{Hom}_{C\text{-mod}}(C, X) = \text{Hom}_{\text{Vect}}(\mathbb{C}, \text{Res } X)$. Therefore $\mathcal{F}^!(C) = T^*(\mathbb{C}) = P_{min}$ by Proposition 3.4.

Let us prove (4). By (5) of Lemma 3.9, C is an injective C-module. Therefore C is injective envelope of \mathbb{C} and $\operatorname{Res}^*(\mathbb{C}) = C$. Analogously $\mathcal{F}^*(C) = T^*(\mathbb{C}) = P_{min}$.

From (4) we get a natural map $\phi : C \simeq \operatorname{Hom}_{C \operatorname{-mod}}(C, C) \to \operatorname{Hom}_{\mathcal{O}}(P_{\min}, P_{\min}).$

Proposition 3.18. We have $\mathcal{F}^*(\mathbb{C}) = \Delta(0)$ (and, similarly, $\mathcal{F}^!(\mathbb{C}) = \nabla(0)$).

Proof. The proof is in several steps.

Step 1. We can consider $\alpha_1, \ldots, \alpha_k \in \mathfrak{h}^*$ as elements of C. Let $\psi_i = \phi(\alpha_i)$ be the corresponding endomorphism of P_{min} . We have an embedding $\mathbb{C} \to C$ as the socle, i.e. the intersection of kernels of all α_i because they generate the maximal ideal of C. \mathcal{F}^* is left exact functor, so $\mathcal{F}^*(\mathbb{C})$ is the intersection of kernels of all ψ_i . We need to show that this intersection coincides with $\Delta(0)$. Note that $\Delta(0)$ is in the kernel of any ψ_i . Indeed, order the labels w_1, \ldots, w_N in W so that $w_i \leq w_j \Rightarrow i \geq j$. Then we have a canonical standard filtration $P_{min} = P^0 \supset P^1 \ldots \supset P^N = \{0\}$ with $P^{i-1}/P^i = \Delta(w_i \cdot 0)$. This filtration is preserved by every endomorphism (there are no Hom's from lower to higher Vermas). In particular, all ψ_i 's preserve the filtration. Since each of them is nilpotent, they kill $\Delta(0)$.

Step 2. Note that P_{min} is filtered with successive quotients $\Delta_{w,i}$, for $w \in W/\{1, s_i\}$. This is because $P_{min} = T^* \Delta(-\rho) = T_{\mu \to 0}(T_{-\rho \to \mu} \Delta(-\rho))$, $\tilde{\Delta}_{w,i} = T_{\mu \to 0} \Delta(w \cdot \mu)$. For reasons similar to Step 1, each of the filtration terms is preserved by ψ_i . We claim that on each of the direct summand $\tilde{\Delta}_{w,i}$ of the associated graded of the filtration ψ_i is nonzero.

Step 3. Let μ be on the wall corresponding to the root α_i . From the transitivity $\tilde{T}_{0\to-\rho} = \tilde{T}_{\mu\to-\rho}\tilde{T}_{0\to\mu}$. Therefore the map $C \to \operatorname{End}(P_{min})$ factors through $C \to \operatorname{End}(\tilde{T}^*_{\mu\to-\rho}(C)) \to \operatorname{End}(P_{min})$. Analogously to (4) of the previous lemma $\tilde{T}^*_{\mu\to-\rho}(C) = \mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{s_i}} P_{min,\mu}$. This object is filtered by $\mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{s_i}} \Delta(w \cdot \mu)$. Note that the action of α_i on the latter is induced from the multiplication on α_i . We have $\tilde{T}_{0\to\mu}\tilde{\Delta}_{w,i} = \mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^{s_i}} \Delta(w \cdot \mu)$ (see Remark 3.16). The induced homomorphism $\operatorname{End}(\tilde{\Delta}_{w,i}) \to \operatorname{End}(\tilde{T}_{0\to\mu}\tilde{\Delta}_{w,i})$ is an isomorphism. The endomorphism $\underline{\psi}_i$ of $T^*_{\mu\to-\rho}(C)$ preserves the filtration by $\mathbb{C}[\mathfrak{h}] \otimes_{\mathbb{C}[\mathfrak{h}]^s} \Delta$'s and is nonzero on each of the factors. Therefore the endomorphism $\psi_i = T^*_{0\to\mu}(\psi_i)$ of P_{min} is nonzero on each $\tilde{\Delta}_{w,i}$.

Step 4. Now we are ready to prove the claim of Step 1. Let K stand for the intersection of the kernels of the ψ_i 's. Pick minimal j such that $K \not\subset P^{j+1}$ for a filtration $P = P^0 \supset P^1 \supset \ldots \supset P_N = \{0\}$ as in Step 1. We can assume that j is minimal for all such filtrations. That means that if i < j then $w_j \prec w_i$. Suppose that $w_j \neq id$. Then there is i such that $w_{j'} := w_j s_i \prec w_j$. Note that if $\Delta(u \cdot 0)$ occurs in P^j then $\Delta(us_i \cdot 0)$ does. Indeed, otherwise $w_j \prec us_i$. As $w_j s_j \prec w_j$ that implies $w_j \prec u$ and we get a contradiction. Therefore P^j is filtered by $\tilde{\Delta}_{u,i}$ where $w \not\prec u$ and $w \not\prec us_i$ and $\tilde{\Delta}_{w_j,i}$ is the top factor. Consider the projection of K on $\tilde{\Delta}_{w_j,i}$. It has non-trivial projection to the Verma quotient $\Delta(w \cdot 0)$, so by Step 3 is not annihilated by ψ_i . The contradiction finishes the proof.

3.7. Completion of the proof. First, we claim that $\mathcal{F}(P_{min}) = C$. By Proposition 3.8, the standard filtration of P_{min} contains |W| Vermas and by (2) of Lemma 3.17, the image of each Verma under \mathcal{F} is one-dimensional. So dim $\mathcal{F}(P_{min}) = |W| = \dim C$.

Now dim Hom_C($\mathcal{F}(P_{min}), \mathbb{C}$) = dim Hom_O($P_{min}, \mathcal{F}^*\mathbb{C}$) = dim Hom_O($P_{min}, \Delta(0)$) = 1 by Corollary 3.6. Since C is projective, the homomorphism $C \to \mathbb{C}$ lifts to $C \to \mathcal{F}(P_{min})$. Since the homomorphism $\mathcal{F}(P_{min}) \to \mathbb{C}$ is unique up to proportionality, we see that $C \to \mathcal{F}(P_{min})$ is an epimorphism. Since the dimensions coincide, $\mathcal{F}(P_{min}) = C$.

Now consider the natural homomorphism $P_{min} \to \mathcal{F}^* \circ \mathcal{F}(P_{min}) = P_{min}$. Applying \mathcal{F} we get a surjective homomorphism. Since \mathcal{F} does not kill the head of P_{min} , we conclude that $P_{min} \twoheadrightarrow \mathcal{F}^* \circ \mathcal{F}(P_{min}) = P_{min}$. But any surjective endomorphism of P_{min} is an isomorphism.

Once $P_{min} \xrightarrow{\sim} \mathcal{F}^* \circ \mathcal{F}(P_{min})$, we see that $\operatorname{End}_{\mathcal{O}}(P_{min}) \xrightarrow{\sim} \operatorname{End}_{\mathcal{C}}(\mathcal{F}(P_{min})) = \operatorname{End}_{\mathcal{C}}(\mathcal{C}) = \mathcal{C}$.

As a conclusion we get that the Soergel functor $\mathbb{V} : \mathcal{O}_0 \to \text{mod-} \text{End}_{\mathcal{O}}(P_{min})$ is, in fact, the extended translation functor $\tilde{T}_{0\to-\rho} : \mathcal{O}_0 \to C$ -mod.

DMYTRO MATVIEIEVSKYI

For the subsequent applications (to prove that \mathbb{V} is fully faithful on the projective objects) let us point out that we have seen above that the natural homomorphism $P_{min} \to \mathbb{V}^* \circ \mathbb{V}(P_{min})$ is an isomorphism.

References

- [B] R. Bezrukavnikov, Canonical bases and representation categories. Course at MIT, Fall 2013 (written up by Tina Kastrup).
- W. Soergel. Kategorie O, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Amer. Math. Soc. 3 (1990), no. 2, 421-445.
- [BG] A. Beilinson, V. Ginzburg, Wall-crossing functors and D-modules. Represent. Theory 3 (1999), 131.
- [BB] A. Beilinson, J. Bernstein, Localisation de g-modules. C.R. Acad. Sci. Paris, Ser. 1 292 (1981), 15-18. MR 82k:14015.

Department of Mathematics, Northeastern University. Boston, MA 02115. USA. E-mail address: matvieievskyi.d@husky.neu.edu