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1 Introduction and motivation

Let k be a locally compact non-discrete field with non-Archimedean valuation
(Say, just the p-adic numbers Qp), O its ring of integers (say Zp) and P a
generator for the maximal ideal of O (i.e. p). In future lectures we will see
how Hecke algebras relate to the representation theory of reductive algebraic
groups over these fields.

The main example to keep in mind is G = GL(n, k). When I talk
about open compact subgroups you should think of GL(n,O) and subgroups
thereof. Other important subgroups to keep in mind are parabolic subgroups
and unipotent subgroups.

This will be a basic introduction to the theory of these groups and their
representation theory, in particular I will focus on aspects of the theory that
are different from say finite groups or Lie groups. Things will be stated in
some generality, but I will try to say what the cases we actually care about
are.

2 Preliminaries on l-spaces and l-groups

An l-space is a topological space that is Hausdorff, locally compact, and zero
dimensional. By zero dimensional we mean that each point has a fundamental
system of open compact neighborhoods.
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An l-group is a topological group such that the identity element has a fun-
damental system of neighborhoods consisting of open compact subgroups. It
can be checked that a topological group is an l-group iff it is an l-space.

Remark: A compact l-group is the same thing as a pro-finite group. Hence
l-groups are also sometimes known as locally pro-finite groups.

Remark: For some results we may also assume that G is countable at infinity,
that is G is a countable union of open compact sets. This is equivalent to
G/N being countable for some open compact N .

Motivating example: In our motivating situation k be a locally com-
pact non-discrete field with non-Archimedean valuation, O its ring of inte-
gers and P a generator for the maximal ideal of O. Then G = GL(n, k)
is an l-group with a fundamental system of open compact neighborhoods
Ni = 1 + P i ·M(n,O).

Some basic topological facts:

• If X is an l-space and Y ⊂ X is a locally closed subset of X then Y is
an l-space in the induced topology.

• If K is a compact subset of an l-space X then any covering of K by
open sets has a finite refinement by pairwise disjoint open compact
subsets. (This is sometimes a definition of zero topological dimension)

• If G is an l-group and H is a closed subgroup of G, then G/H (or H\G)
is an l-space under the quotient topology.

Let X be an l-space. We will let S(X) be the set of locally constant com-
plex valued functions with compact support on X, these are called Schwartz
functions. The dual space S∗(X) is the space of distributions. Given an open
subset Y ⊂ X we have the following exact sequence:

0→ S(Y )→ S(X)→ S(X\Y )→ 0

Where the first map is extension by zero and the second is restriction. Sur-
jectivity follow from the zero dimensional requirement. We get an analogous
exact sequence for distributions by taking duals.
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We say that a distribution is finite if it has compact support, and denote
the set of finite distributions by S∗c (X). Given a sheaf F of vector spaces on
an l-space X we can look at its compactly supported sections and dualize to
talk about distributions on F .

2.1 Haar measure stuff

Now let G be an l-group and consider the action of G on itself by left trans-
lations. Then there exists a unique (up to scalars) G-invariant distribution
µG ∈ S∗(X). More explicitly this means:∫

G

f(g0g)dµG(g) =

∫
G

f(g)dµG(g) ∀f ∈ S(X), g0 ∈ G

We also require that this be positive, that is the integral of any positive real
function is positive. This is called the (left) Haar Measure. The right Haar
measure is defined similarly.

Since the right and left actions of G on itself commute it follows that right
multiplication by g ∈ G sends µG to some multiple ∆G(g). This function
∆G(g) is easily seen to be a character, called the modulus. In particular we
get that ∆G(g)−1µG is a right Haar measure (for the opposite group).

Any compact subgroup gets mapped to a compact subgroup of R∗>0 and
hence gets mapped to 1. If G is generated by compact subgroups then
∆G(g) = 1 and G is said to be unimodular (This is the case for GL(n, k)).

Warning: In general it is not always possible to define a G invariant
Haar measure on G/H. This is possible iff ∆ = ∆G/∆H = 1. This can be
fixed to some extent by defining “O(G/H)” to be functions that transform
by ∆ under H instead of being H-invariant, this space will then have a Haar
measure.

2.2 The convolution algebra

Given two distributions T1, T2 ∈ S∗c (G) define their convolution T1 ∗ T2 by∫
G

f(g)d(T1 ∗ T2)(g) =

∫
G×G

f(g1g2)d(T1 ⊗ T2)(g1, g2)

Where we view T1 ⊗ T2 as a distribution on G × G in the natural way.
It’s easy to see that the support of T1 ∗T2 is contained in supp(T1) ·supp(T2),
so in particular T1 ∗ T2 ∈ S∗c (G).
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This turns S∗c (G) into an associative algebra with unit element δe the
Dirac delta distribution at the group identity element. The mapping g → δg
gives us an inclusion of G into S∗c (G), if G were finite then this gives an
isomorphism between C(G) and S∗c (G).

Moreover the map f → fµG lets us identify S(G) with the space H(G) of
finite distributions that are locally constant on the left, that is distributions
T such that there exists an open subgroup N ∈ G such that NT = T . H(G)
is a two sided ideal of S∗c (G).

This lets us carry over the convolution operation to S(G) explicitly this
operation is given by the familiar formula:

f1 ∗ f2(g0) =

∫
G

f1(g)f2(g
−1g0)dµG(g)

Remark: We will stick with the notation H(G) when referring to S(G) as
a (non-unital) algebra with this new multiplication. This is sometimes called
the Hecke algebra of G.

3 Representations of l-groups

We will be talking about complex representations of l-groups. For notation
we will write π = (π,G, V ) for “π is a representation of the l-group G on a
complex vector space V ”. I may further just shorten it to V . We will put no
topology on our vector spaces, and have the usual notion of irreducible.

Some definitions:
A representation (π,G, V ) is algebraic (or smooth) if for any v ∈ V we

have that stab(v) is open in G. For an arbitrary representation (π,G, V ) the
set of such vectors forms a subrepresentation called the algebraic part of π.

We say a representation is admissible if it is algebraic and for any open
subgroup N ∈ G the space V N of N invariant vectors is finite dimensional.

Example For any l-group G acting on an l-space X the action of G on
S(X) is algebraic but the action of G on C∞(X) is not necessarily algebraic.
(Its algebraic part consists of those functions that are locally constant on the
left)

Let (π,G, V ) be an algebraic representation and T ∈ S∗c (G) be a finite
distribution on G. We define an operator π(T ) on V thinking of g → π(g)v
as a V valued function on G and integrating with respect to T . That is, we
define:
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π(T )v =

∫
G

π(g)vdT (g)

This upgrades V to being a representation of S∗c (G), and the copy of G
we have sitting inside S∗c (G) acts the right way, that is, π(δg) = π(g).

If H ⊂ G is a compact subgroup then define δH to be the Haar measure
on H (normalized so that H has volume 1) considered as a measure on G.
In particular π(δH) is just the projection onto V H , the space of H invariant
vectors. To see this just note that π(δH) acts by 0 on the subspace spanned
by all vectors of the form π(h)v − v for h ∈ H, and that H acts trivially on
the quotient by this subspace.

Let (π,G, V ) be an algebraic representation of G. Then can also think of
it a representation of H(G) with the property that V = ∪π(δN)V (= ∪V N)
where the union is over all compact open subgroups N ∈ G. In fact we have
a converse to this and we get that the category of algebraic representation is
equivalent to the subcategory of H(G) modules such that V = ∪π(δN)V

Proof: Just identify G with the delta functions in S∗c (G) and define an
action of T ∈ S∗c (G) by π(T )v = π(T ∗ δN) for some open compact N such
that v ∈ V N .

3.1 The representations πN

Let N ⊂ G be an open compact subgroup of an l-group G. Let HN = δN ∗
S∗c (G)∗δN be the set ofN bi-invariant compactly supported distributions, this
is a unital algebra with identity element δN . For an algebraic representation
(π,G, V ) let πN be the representation of HN on V N .

Proposition: π is irreducible iff for all open compact subgroups N :
πN = 0 or πN is irreducible.

Proof: Suppose π is irreducible. Take any two vectors v1, v2 ∈ V N , since
V is irreducible there exists T ∈ H(G) such that π(T )v1 = v2 but then it
follows that π(δN ∗T ∗δN)v1 = v2 so V N is irreducible. Conversely, if V ′ ⊂ V
is a sub representation then for N small enough we can find N invariant
vectors both inside and outside V ′, so V ′N is a sub representation of V N .

Proposition: Given two irreducible representations π1, π2 such that
π1N ' π2N � 0 then we have π1 ' π2 as G representations.

Proof: Suppose j : V N
1 → V N

2 is an isomorphism of HN modules. Then
consider W := {(v, jv)} ⊂ V N

1 ⊕ V N
2 and consider the G module W̃ gener-
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ated by W in V1 ⊕ V2. We have that W̃N = W so in particular W̃ is neither
contained in nor contains V1 or V2. Since these are irreducible the projections
must be isomorphisms so V1 ' W̃ ' V2.

Proposition: Given any irreducible representation (τ,W ) of HN there
exists an irreducible algebraic representation of G such that τ ' πN .

Proof: W is irreducible so W ' HN/I for some left ideal I. Now consider
H(G) and a left module over itself and let V1, V2 be the submodules generated
by HN and I. Then V N

1 ' HN and V N
2 ' I. So if we let V3 ' V1/V2 we get

V N
3 ' W . Taking an appropriate irreducible factor of this gives us what we

want.

3.2 Contragradient (i.e. dual) representations

Let (π,G, V ) be an algebraic representation. As usual we get dual repre-
sentation (π∗, G, V ∗) defined by (π∗(g)ξ)(v) = ξ(π−1(v)) on the full dual.
Taking the algebraic part of this we get a representation (π̃, G, Ṽ ) called the
contragradient representation, or just the algebraic dual.

For any compact subgroup H ⊂ G and ξ ∈ (V ∗)H we have that ξ(v) =
ξ(π(δH)v) for all v ∈ V . In particular this implies that (V ∗)H ' (V H)∗.
Moreover if H is an open compact group then Ṽ H ' (V ∗)H ' (V H)∗ (as any
H invariant linear form will necessarily be algebraic since H is contained in
its stabilizer).

For T ∈ S∗c (G) define Ť to be the distribution obtained from T by means
of the map g 7→ g−1. For all ξ ∈ Ṽ and v ∈ V we have that 〈π̃(T )ξ, v〉 =
〈ξ, π(Ť )v〉. Indeed:

〈π̃(T )ξ, v〉 =

∫
G

〈π̃(g)ξ, v〉dT (g) =

∫
G

〈ξ, π̃(g−1)v〉dT (g) =

∫
G

〈ξ, π̃(g)v〉dŤ (g)

Proposition Now lets assume that π is admissible. We have that:

1. π̃ is also admissible.

2. The natural map V → ˜̃V is an isomorphism.

3. π is irreducible iff π̃ is.

6



Proof: (1) and (2) follow from the fact that (Ṽ )N = (V N)∗ and these are
all finite dimensional. For (3) If W ∈ V were a submodule then those linear
functionals vanishing on W form a subrepresentation of Ṽ .

3.3 Characters

Let (π,G, V ) be an admissible representation. Then for any T ∈ H(G) we
have that π(T ) has finite rank. (To see this just note that T is a finite linear
combination of G translates of the distributions δN which are just projections
onto the finite dimensional spaces V N). In particular it makes sense to talk
about the trace tr π(T ). Hence we can define the trace distribution trπ by
fixing a haar measure µG and letting

(tr π)(f) = tr π(fµG)

This is called the character of π

Proposition: Given π1, π2, . . . , πk pairwise inequivalent irreducible ad-
missible representations of an l-group then their characters tr π1, tr π2, . . . , tr πk
are linearly independent. In particular two irreducible admissible represen-
tations are the same iff they have the same character.

Proof (sketch) Choose an open compact subgroup N such that the
representations πNi are all nonzero. They are all irreducible and pairwise
inequivalent finite dimensional representations ofHN , and the result for finite
dimensional representations is standard.

3.4 Induced representations and Frobenius reciprocity

Let H ⊂ G be a closed subgroup of an l-group G, and let (ρ,H, V ) be
an algebraic representation. We will let L(G, ρ) be the space of functions
f : G→ V such that:

1. f(hg) = ρ(h)f(g) for all h ∈ H and g ∈ G

2. There exists an open compact subgroup f(gn) = f(g) for all g ∈ G and
n ∈ N .

And call this the induced representation IndGH(ρ), condition (2) is there to
ensure this is algebraic.
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Inside L(G, ρ) we have a subspace S(G, ρ) of those functions f that are
finite modulo H, that is, there exists a compact set Kf ∈ G such that
supp(f) ∈ H ·Kf . We call this the finitely induced representation indGH(ρ).

Remark These two constructions are related by the identity ˜indGH(ρ) '
IndGH(∆G/∆H ρ̃). The pairing is given by integrating f̃(g)f(g) over H\G with
the twisted Haar measure I mentioned earlier. In the case that ∆G/∆H = 1
everything works out much nicer.

In the case where G is compact modulo H (for example if H is a parabolic
subgroup) then these two versions of induction coincide and send admissible
representations to admissible representations. To see this just note that for
any open compact N we have that the set of double cosets N\G/H is finite.

We get the the usual properties of induction functors that we would ex-
pect:

1. IndGH and indGH are exact functors.

2. IndGH ◦ IndHF = IndGF and similarly for ind

3. We now have two versions of Frobenius reciprocity:

HomG(π, IndGH(ρ)) ∼= HomH(π|H , ρ)

HomG(indGH(ρ), π̃) ∼= HomH(∆H/∆Gρ, (̃π|H))

Remark: Of particular importance is when H is a parabolic subgroup
with Levi decomposition H = MN , and we are inducing up modules on
which N acts trivially. This is called parabolic induction.

3.5 Functors VG,θ

Remark: For this section we mostly want to think of H as being the unipotent
radical of some parabolic subgroup. This will give us so called parabolic
restriction.

Let H be an l-group and θ be a character of H (i.e. a one dimensional al-
gebraic representation). Then for any representation (π,H, V ) define V (H, θ)
to be the subspace spanned by all vectors of the form π(h)v − θ(h)v. Then
let VH,θ := V/V (H, θ), if θ is the trivial character we will just write this as
VH the space of coinvariants.
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• This is a θ twisted version of coinvariants so as we expect, the dual no-
tion is a twisted version of invariants. That is: V ∗H,θ = {ξ ∈ V ∗|π∗(h)v =
θ−1(h)v}.

• If we twist the representation by θ−1, then we can often reduce to the
case where θ is trivial. That is: (Vπ ⊗ Cθ−1)H ' (Vπ)H,θ

• Suppose G is a closed subgroup of some l-group G. Define a θ -
normalizer: NormG(H, θ) = {g ∈ G|ghg−1 ∈ H and θ(ghg−1) = θ(h) ∀h ∈
H}. For any representation V ofG, NormG(H, θ) preserves V (H, θ) and
hence acts on VH,θ. (If H is the unipotent radical of a parabolic P then
NormG(H, 1) = P )

Now assume that H is exhausted by its compact subgroups, that is, every
compact subset of H is contained in some compact subgroup of H. In this
case we have a convenient way to describe V (H, θ):

Theorem: (Jacquet and Langlands) A vector v ∈ V lies in V (H, θ)
if and only if there exists a compact subgroup N ∈ H such that:

π(θ−1 · δN)v =

∫
N

θ−1(h)π(h)vdµN(h) = 0

Note that the case when θ = 1 we already looked at the kernel of π(δN),
the general case reduces to this by twisting by θ.

As a corollary of this, under the same conditions we see that if V ′ ⊂ V
is a sub representation then V ′(H, θ) = V ′ ∩V (H, θ). This then implies that
V 7→ VH,θ is an exact functor. (Without the assumption it may just be right
exact)
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