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The big purpose of the entire course is to study the category of rational repre-
sentations of connected reductive groups in positive characteristic. This category
shares many common features with an easier and more classical representation
theoretic category: the BGG category O, which consists of certain, generally
speaking, infinite dimensional representations of a complex semisimple Lie al-
gebra. So we discuss the categories O in some detail before proceeding to the
rational representations.

1. Definition, Verma and simple modules

Let g be a complex semisimple Lie algebra. We fix Cartan and Borel subalge-
bras h ⊂ b ⊂ g. Let n be the nilpotent radical of b so that b = h ⊕ n. We have
the triangular decompositions g = n− ⊕ h⊕ n, and hence

(1.1) U(g) = U(n−)⊗ U(h)⊗ U(n).

For λ ∈ h∗ we define Verma modules as follows ∆(λ) := U(g) ⊗U(b) Cλ, where
Cλ is the one dimensional b-module with action via b� h

λ−→ C. Thanks to (1.1),
∆(λ) is a free rank one U(n−)-module, and, moreover, ∆(λ) ∼= U(n−)⊗ Cλ as a
U(b−)-module. Its weight decomposition

(1.2) ∆(λ) =
⊕
µ6λ

∆(λ)µ,
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where < refers to the standard order on Λ, and dim ∆(λ)λ = 1. Any proper
b−- and hence g-submodule of ∆(λ) is contained in

⊕
µ<λ ∆(λ)µ. It follows that

∆(λ) has a unique simple quotient, denote it by L(λ). All weights of the kernel
of ∆(λ)� L(λ) are < λ. We note that λ 6= λ′ ⇒ L(λ) 6∼= L(λ′).

Definition 1.1. Let O denote the category of finitely generated U(g)-modules M
such that

(1) M has weight decomposition, M =
⊕

µ∈ΛMµ for the h-action (where Λ

stands for the weight lattice of g). If Mµ 6= {0}, we say that µ is a weight
of M .

(2) The set of weights of M is bounded from above, i.e., there is a finite
collection λ1, . . . , λk ∈ Λ such that Mµ 6= {0} ⇒ µ 6 λi for some i.

Note that dimMµ <∞ for all M ∈ O, µ ∈ Λ.

Exercise 1.2. Every object in O admits a finite filtration by quotients of Verma
modules.

Exercise 1.3. The assignment λ 7→ L(λ) identifies Λ with the set Irr(O) of
isomorphism classes of simples in O.

1.1. Harish-Chandra isomorphism and block decomposition. Let Z(g)
denote center of U(g).

Theorem 1.4 (Harish-Chandra). Z(g) is identified with C[h∗]W , where the action
of W on h∗ is given by w · λ := w(λ+ ρ)− ρ.

Let us explain how this identification work. For z ∈ Z, let fz ∈ C[h∗]W be the
corresponding element. We need to explain how to compute fz(λ).

Exercise 1.5. z preserves ∆(λ)λ and hence acts on ∆(λ) by a scalar.

The value fz(λ) is this scalar.

Example 1.6. Let g = sl2. We have W = S2 = {e, s}, ρ = 1 and Z(g) is freely
generated by the Casimir element

C = ef + fe+
h2

2
= 2fe+ h+

h2

2
.

We see that C acts on ∆(λ) via (λ(λ + 2))/2. The dotted action is given by
s · λ = s(λ+ 1)− 1 = −λ− 2. So F[λ]W = F[λ(λ+ 2)] and everything matches.

Let us proceed to (infinitesimal) blocks.

Definition 1.7. For W · λ ∈ W\Λ, let OW ·λ denote the full subcategory of O
consisting of all modules M ∈ O such that every z ∈ Z(g) with fz(λ) = 0 acts on
M nilpotently.
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Example 1.8. We have ∆(µ) ∈ OW ·λ ⇔ µ ∈ W · λ. The same is true for the
objects L(µ).

Exercise 1.9. For every λ ∈ Λ, the object ∆(λ) has finite length.

Using Exercises 1.2,1.9, we deduce the following result.

Proposition 1.10. Every object in O has finite length. Moreover,
O =

⊕
χ∈W\Λ Oχ.

Exercise 1.11. If λ + ρ ∈ Λ is antidominant, then ∆(λ) = L(λ) (in fact, it is
an “if and only if ” statement).

Note that Irr(OW ·λ)
∼−→ W ·λ. In particular, it is identified with W when λ+ ρ

is regular, i.e. 〈λ + ρ, α∨〉 6= 0 for all α ∈ ∆. In this case, we call OW ·λ a regular
block. Otherwise, we say that OW ·λ is a singular block.

2. Duality

Let τ : g ∼−→ g denote the Cartan involution: it acts as −1 on h∗ and swaps
each ei with fi. In particular, τ 2 = id.

Let M be a g-module such that M =
⊕

µ∈Λ Mµ with dimMµ < ∞ for all µ.
We define another such g-module M∨ as follows: M∨ :=

⊕
µM

∗
µ the action is

given by 〈x · n,m〉 = 〈n,−τ(x)m〉 for n ∈M∨,m ∈M .

Exercise 2.1. Prove the following properties of •∨:
(1) (M∨)∨ ∼= M ,
(2) M∨

µ = M∗
µ,∀µ, – this is a reason why we twist with τ .

(3) L(λ)∨ ∼= L(λ).

Since every object in O has finite length, from (1) and (3) we deduce

Proposition 2.2. •∨ is an equivalence O
∼−→ Oopp. Moreover, for each λ, the

equivalence •∨ restricts to OW ·λ
∼−→ O

opp
W ·λ.

Definition 2.3. For λ ∈ Λ, define the dual Verma module ∇(λ) as ∆(λ)∨.

Remark 2.4. Let us give a category theoretical characterization of the objects
∆(λ) and ∇(λ). Set O6>λ := {M ∈ O|Mµ 6= {0} ⇒ µ 6> λ}. Note that, for
M ∈ O, we have Hom(∆(λ),M) = {m ∈ Mλ|nm = 0}. So, for M ∈ O 6>λ,
this becomes Hom(∆(λ),M) = Mλ because the action of n increases weights. We
deduce that ∆(λ) is a projective object in O 6>λ, and, moreover, it is the projective
cover of L(λ). Dually, ∇(λ) is the injective envelope of L(λ) in O6>λ.

Exercise 2.5. Prove the following:
(1) L(λ) ↪→ ∇(λ),
(2) dim Hom(∆(λ),∇(µ)) = δλµ,
(3) A nonzero homomorphism ∆(λ) → ∇(λ) is a composition

∆(λ)� L(λ) ↪→ ∇(λ).
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3. Projective functors and projective objects

3.1. Tensor products with finite dimensional representations. Let V be
a finite dimensional g-module.

Exercise 3.1. If M ∈ O, then M ⊗ V ∈ O.

So we get a functor TV : O→ O, TV (M) := M⊗V . Let us discuss its properties.

Exercise 3.2. The following are true:
(1) TV is biadjoint to TV ∗, in particular, it is exact.
(2) TV commutes with the duality functor.

Let us understand the structure of ∆(λ)⊗ V .

Lemma 3.3. Let v1, . . . , vm be a weight basis of V with weights µ1, . . . , µm. Sup-
pose that the vectors are ordered in the decreasing order, i.e., µi 6 µj ⇒ i > j.
Then there is a filtration {0} = F0 ⊂ F1 ⊂ . . . ⊂ Fm = V ⊗ ∆(λ) with
Fi/Fi−1 = ∆(λ+ µi).

Proof. Note that
∆(λ)⊗ V = (U(g)⊗U(b) Cλ)⊗ V ' U(g)⊗U(b) (V ⊗ Cλ),

where the last isomorphism holds because of the following chain of isomorphisms:

Homg((U(g)⊗U(b) Cλ)⊗ V, •) ' Homg(U(g)⊗U(b) Cλ, V
∗ ⊗ •) '

' Homb(Cλ, V
∗ ⊗ •) ' Homb(Cλ ⊗ V, •) ' Homg(U(g)⊗U(b) (Cλ ⊗ V ), •).

By our ordering of weights, V6i := Span(vj|j 6 i) is a b-submodule of V .
We set Fi := U(g) ⊗U(b) (V6i ⊗ Cλ). Thanks to triangular decomposition (1.1),
U(g)⊗U(b) • ' U(n−)⊗C • is an exact functor, so Fi/Fi−1 is indeed ∆(λ+µi). �

Example 3.4. Let g = sl2. Consider the object P (−2) := C2⊗∆(−1). We have
µ1 = 1, µ2 = −1 and hence an exact sequence

0→ ∆(0)→ P (−2)→ ∆(−2)→ 0.

3.2. Projective functors. Now we want to cook functors OW ·λ → OW ·λ′ out of
TV . Note that we have the inclusion functor ιW ·λ : OW ·λ ↪→ O and its biadjoint,
the projection functor πW ·λ : O� OW ·λ. Often we abuse the notation and write
ιλ, πλ instead of ιW ·λ, πW ·λ.

By a projective functor we mean a functor of the form
πλ′ ◦ TV ◦ ιλ.

Note that it has a biadjoint, commutes with duality.

Exercise 3.5. Use Lemma 3.3 to deduce that πλ′ ◦ TV ◦ ιλ(∆(λ)) is filtered with
successive quotients ∆(λ + µ), where µ runs over the weights of V such that
λ+ µ ∈ W · λ′.
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3.3. Translation functors. This is a special case of projective functors, where
we pick “the smallest interesting” module V . Let us pick λ, λ′ such that λ+ρ, λ′+ρ
are dominant (there is a unique element with this property in eachW -orbit). Pick
a dominant element ν in W (λ′ − λ) (here we consider the usual action) and set
V = L(ν), this is a finite dimensional g-module.

Definition 3.6. The translation functor Tλ′←λ : OW ·λ → OW ·λ′ is πλ′ ◦ TV ◦ ιλ.
Let us introduce the following notation. For λ + ρ ∈ Λ+ by Cλ we denote

the (closed) face of the positive Weyl chamber R>0Λ+ that contains λ + ρ i.e.
Cλ = R>0Λ+ ∩

⋂
α∨i ,〈λ+ρ,α∨i 〉=0

kerα∨i . For example, C0 is the whole positive Weyl

chamber, while C−ρ = {0}. We want to examine the behavior of the functors
Tλ′←λ in the case when one of Cλ, Cλ′ contains the other.

Proposition 3.7. Suppose that Cλ = C ′λ. Then we have

Tλ′←λ(∆(w·λ)) = ∆(w·λ′), Tλ′←λ(∇(w·λ)) = ∇(w·λ′), Tλ′←λ(L(w·λ)) = L(w·λ′).
Moreover, Tλ′←λ and Tλ←λ′ are mutually quasi-inverse equivalences.

Proposition 3.8. Suppose that Cλ ⊃ C ′λ. Then we have

Tλ′←λ(∆(w · λ)) = ∆(w · λ′), Tλ′←λ(∇(w · λ)) = ∇(w · λ′),
while for w longest in w StabW (λ+ ρ) we have

Tλ′←λ(L(w · λ)) =

{
L(w · λ′), if w is longest in w StabW (λ′ + ρ),

0, else.

In particular, various computations for OW ·λ′ (such as the multiplicities of
simples in the Vermas) can be deduced from the analogous computations for the
principal block OW ·0.

Example 3.9. Let g = sl3, λ = 0, λ′ = −ω1 (the first fundamental weight i.e.
〈ω1, α

∨
1 〉 = 1, 〈ω1, α

∨
2 〉 = 0). Then StabW (λ′ + ρ) = 〈s1〉 and Tλ′←λ kills precisely

the simples L(0), L(s2 · 0), L(s2s1 · 0).

Proposition 3.10. Suppose that Cλ ⊂ C ′λ. Then Tλ′←λ(∆(w · λ)) is filtered by
all different Vermas ∆(wu · λ′) with u ∈ StabW (λ + ρ). The order of terms is
increasing with respect to the weight from bottom (sub) to top (quotient), compare
with Lemma 3.3.

Hint: deduce this proposition from Proposition 3.8 using adjointness.

Example 3.11. In the setting of the previous example,

0→ ∆(0)→ T0←−ω1∆(−ω1)→ ∆(s1 · 0)→ 0.

Exercise 3.12. If Cλ′′ ⊂ Cλ′ ⊂ Cλ, then Tλ′′←λ ∼= Tλ′′←λ′ ◦ Tλ′←λ and Tλ←λ′′ ∼=
Tλ←λ′ ◦ Tλ′←λ′′.
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3.4. Reflection functors. Recall that we write I for the set of simple roots. For
αiI, let ωi denote the corresponding fundamental weight.

Definition 3.13. Set Θi := T0←−ωi
◦T−ωi←0. This is a reflection functor OW ·0 →

OW ·0.

Exercise 3.14. Θi is self biadjoint and commutes with •∨.

The following result is a consequence of Propositions 3.8 and 3.10.

Proposition 3.15. The object Θi∆(w · 0) is filtered by ∆(w · 0) and ∆(wsi · 0).
The larger of the two weights labels the sub.

3.5. Projective objects. One application of reflection functors is to construct
projective objects in OW ·0. Note that 0 is the maximal weight that can occur in
an object of OW ·0. So, by Remark 2.4, ∆(0) is a projective in OW ·0. And since
each Θi is left adjoint to an exact functor (again, Θi), it maps projectives to
projectives.

Theorem 3.16. OW ·0 has enough projectives. Moreover, if P (w · 0) denotes the
projective cover of L(w · 0) and w = si1 . . . sik is a reduced expression, then

Θi`Θi`−1
. . .Θi1∆(0) = P (w · 0)⊕

⊕
w′≺w

P (w′ · 0)⊕?.

As a hint for the second part Θi`Θi`−1
. . .Θi1∆(0)� ∆(w · 0), while the kernel

is filtered with ∆(w′ · 0), where w′ ≺ w.

Example 3.17. The object P (−2) := C2⊗∆(−1) = T0←−1∆(−1) from Example
3.4 is indecomposable and hence it is the projective cover of L(−2).

Exercise 3.18. Prove that, for any g, P (−2ρ) = T0←−ρ∆(−ρ).

Exercise 3.19. Prove that any OW ·λ has enough projectives for all λ ∈ Λ.

Remark 3.20. We see that OW ·λ has finitely many simples and enough pro-
jectives, while all objects have finite length. This precisely means that OW ·λ is
equivalent to the category of finite dimensional modules over a finite dimensional
associative (unital) algebra.

4. Highest weight structure and tilting objects

Let K be an algebraically closed field and C be an abelian category equivalent
to A -mod for a finite dimensional associative K-algebra A.

Suppose Irr(C), the set of isomorphism classes of irreducibles in C is equipped
with a partial order 6. Let C6>L denote the Serre span of all simples L′ with
L′ 6> L in C. For L ∈ Irr(C), we write ∆L,∇L for the projective cover and
the injective hull of L. These are called the standard and costandard objects,
respectively.
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Exercise 4.1. Prove the following:
(1) Ext1(∆L,∆L′) 6= 0⇒ L < L′.
(2) Ext1(∇L,∇L′) 6= 0⇒ L > L′.
(3) Ext1(∆L,∇L′) = 0.

Definition 4.2. (C,6) is called a highest weight category if for every L ∈ Irr(C)
the following two conditions hold:

(1) The kernel of ∆L � L lies is C<L.
(2) There is a projective object P̃L ∈ C such that P̃L � ∆L and the kernel is

filtered by ∆L′ with L′ > L.

Exercise 4.3. Prove that if (1) holds for C, then:
Hom(∆L,∆L′) 6= 0⇒ L 6 L′ and End(∆L) = K.
Hom(∇L,∇L′) 6= 0⇒ L > L′ and End(∇L) = K.
dim Hom(∆L,∇L′) = δL,L′.

Remark 4.4. In fact, modulo (1), the subcategory C∆ of all standardly filtered
(=filtered by standards) is closed under taking the direct summands. So in (2)
we can require that P (L) = PL, the projective cover of L. A more interesting
equivalent condition is that, modulo (1), (2) is equivalent to Exti(∆L,∇L′) = 0
for all i > 0.

The next theorem follows from Theorem 3.16 and the hint for its proof.

Theorem 4.5. Category OW ·0 is highest weight with respect to the standard order
on weights. The standards are ∆(w · 0)’s, while the costandards are ∇(w · 0).

In fact, we can take a weaker order as well. Let us identify Irr(OW ·0) with W
via w 7→ L(w · (−2ρ)). Then we can take the Bruhat order on W for the highest
weight order. This also follows from Theorem 3.16.

Exercise 4.6. Prove that OW ·λ is highest weight with respect to the standard
order on weights for any λ.

Exercise 4.7. Let C be a highest weight category, in particular, PL is standardly
filtered. Then the multiplicity [PL : ∆L′ ] of ∆L′ in any filtration of PL by standards
coincides with dim(Hom(PL,∇L′)) which in turn coincides with the multiplicity
[∇L′ : L] of L in (the Jordan-Hölder filtration of) ∇L′. This is the so called BGG
reciprocity.

Thanks to •∨, in the category O, we have [∆(λ) : L(µ)] = [∇(λ) : L(µ)].
Together with the previous exercise, this gives the classical BGG reciprocity:

Theorem 4.8. [P (λ) : ∆(µ)] = [∆(µ) : L(λ)] for all λ, µ ∈ Λ.

Let us now discuss tilting objects.
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Definition 4.9. An object in C is called tilting if it is both standardly and co-
standardly filtered.

Let us explain why we care about tiltings. Since there are no higher exts
between standard and costandard objects, for any two tiltings T, T ′, we have
Exti(T, T ′) = 0. Moreover, the indecomposable tiltings are in a natural bijection
with Irr(C): for any L, there is a unique indecomposable tilting TL subject to the
following two equivalent properties:

• There is a monomorphism ∆L ↪→ TL whose cokernel is filtered with ∆L′

for L′ < L.
• There is an epimorphism TL � ∇L whose kernel is filtered with ∇L′ for
L′ < L.

It follows that the indecomposable tiltings form a full exceptional collection
in C, just like projectives and injectives. But tiltings are more symmetric: for
example, when C has a contravariant duality fixing the simples (like OW ·λ does),
every tilting is self-dual.

For the category OW ·0, we have the following analog of Theorem 3.16:

Exercise 4.10. If w = si1 . . . sik is a reduced expression, then

ΘikΘik−1
. . .Θi1∆(−2ρ) = T (w · (−2ρ))⊕

⊕
w′≺w

T (w′ · (−2ρ))⊕?.

5. Parabolic categories O

It will be useful for us to consider a generalization of O, parabolic categories O
(the reason is that the category of rational representations of a reductive group
in characteristic p is a “modular analog” of a suitable affine parabolic category
O).

Let J ⊂ I. This gives a parabolic subalgebra p = pJ and its Levi l = lJ .

Definition 5.1. We define the parabolic category OJ as the full subcategory of
O consisting of all modules, where l acts locally finitely (=every vector lies in a
finite dimensional l-submodule).

Remark 5.2. For J = ∅ we recover the category O, while for J = I we get the
category of all finite dimensional g-modules.

Exercise 5.3. OJ is a Serre subcategory.

Definition 5.4. Let Λ+
J be the set of dominant weights for l, i.e., λ ∈ Λ such

that 〈λ, α∨〉 > 0 for any α ∈ J .

Definition 5.5. For λ ∈ Λ+
J we define the parabolic Verma module ∆J(λ) :=

U(g)⊗U(p)LJ(λ), where LJ(λ) is the (finite dimensional) irreducible representation
of l with highest weight λ.
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Exercise 5.6. ∆(λ)� ∆J(λ).

Let m denote the nilpotent radical of p and let m− be the nilpotent radical of the
opposite parabolic p− so that p = l⊕m, p− = l⊕m− and g = m−⊕p. Similarly to
the case of usual Verma modules, we get an isomorphism ∆J(λ) ∼= U(m−)⊗LJ(λ)
of U(p−)-modules.

The properties OJ are very similar to those of the usual category O. Let us list
these properties as an exercise.

Exercise 5.7. The following hold:
(1) ∆J(λ) ∈ OJ for all λ ∈ Λ+

J . Moreover, L(λ) is the unique irreducible
quotient of ∆J(λ).

(2) OJ is the Serre span in O of L(λ) with λ ∈ Λ+
J .

(3) The category OJ is preserved by •∨ and by all projective functors.
(4) For any λ ∈ Λ+

J , every projective functor maps ∆J(λ) to an object that
admits a filtration by parabolic Vermas.

(5) If λ ∈ Λ+, then ∆J(λ) is projective in OJ .
(6) Θi∆J(w · 0) is filtered with ∆J(w · 0),∆J(wsi · 0) if wsi · 0 ∈ Λ+

J and is
zero else.

(7) The category OJ,W ·λ := OJ ∩ OW ·λ is highest weight with respect to the
standard order on weights.


