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Introduction

The aim of this lecture is to recall some standard basic things about the representation
theory of finite dimensional algebras and finite groups. First, we recall restriction, induction
and coinduction functors. Then we recall the Schur lemma and deduce consequences about
the action of the center and the structure of completely reducible representations. Then we
explain the structure and representation theory of simple finite dimensional algebras over
algebraically closed fields. Next, we proceed to semisimple algebras. Finally, we use the
latter to recall basics about the representation theory of finite groups.

1. Restriction, induction and coinduction

Let A,B be associative unital algebras over a field F with a homomorphism B → A. Let
M be an A-module. Of course, we can view M as a B-module. On the other hand, A is a
left A-module and a right B-module. These two operations commute, one says in this case
that A is an A-B-bimodule. It follows that, for a B-module N , the space A ⊗B N carries
a natural structure of a left A-module (induced module). Also A is a B-A-bimodule. So
HomB(A,N) is a left A-module via (aφ)(a′) := φ(a′a), φ ∈ HomB(A,N), a, a′ ∈ A. This is
a coinduced module.

Lemma 1.1. For an A-module M and a B-module N we have natural isomorphisms

HomB(N,M) ∼= HomA(A⊗B N,M), HomB(M,N) ∼= HomA(M,HomB(A,N)).

Proof. Consider the map HomB(N,M) → HomA(A ⊗B N,M) that sends η to ψη given
ψη(a ⊗ n) = aη(n) and the map in the opposite direction that sends ψ to ηψ given by
ηψ(n) := ψ(1⊗n). It is left as an exercise to check that the maps are well-defined (i.e., land
in the required Hom spaces) and are mutually inverse. Establishing a natural isomorphism
HomB(M,N) ∼= HomA(M,HomB(A,N)) is also left as an exercise. �

2. Schur lemma and its consequences

2.1. Schur lemma. The following important result is known as the Schur lemma.

Proposition 2.1. Let F be algebraically closed, A be an associative unital F-algebra and let
U, V be finite dimensional irreducible A-modules. Then the following is true.

(1) If U, V are non-isomorphic, then HomA(U, V ) = 0.
(2) EndA(U) consists of constant maps. In particular, dimEndA(U) = 1.

Under some assumptions, this can be generalized to infinite dimensional irreducible mod-
ules.
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2.2. The action of the center. Consider the center of A, Z(A) := {z ∈ A|za = az, ∀a ∈
A}. This is a commutative algebra. The following claim is a corollary of the Schur lemma.

Corollary 2.2. Let z ∈ Z(A), and let U be a finite dimensional irreducible A-module. Then
z acts on U by a scalar.

It follows that there is an algebra homomorphism χU : Z(A) → F (called the central
character of U) such that z acts on U as the multiplication by χU(z).

2.3. Multiplicities in completely reducible modules. Let A be an associative unital
algebra over an algebraically closed field F. Let Vi, i ∈ I, be the finite dimensional irreducible
A-modules, where I is an indexing set. Now let V be a completely reducible finite dimensional
A-module. Since V is completely reducible, there are non-negative integers mi, i ∈ I, with
only finitely many nonzero such that V ∼=

⊕
i∈I V

⊕mi
i .

The following lemma is a consequence of the Schur lemma and the additivity of Hom’s:
HomA(Vi, V

′ ⊕ V ′′) ∼= HomA(Vi, V
′)⊕ HomA(Vi, V

′′).

Lemma 2.3. The number mi coincides with dimHomA(Vi, V ).

We call HomA(Vi, V ) the multiplicity space for Vi in V . The name is justified by the
observation that the natural homomorphism

(2.1)
⊕
i∈I

Vi ⊗ HomA(Vi, V ) → V,
∑
i∈I

vi ⊗ φi 7→
∑
i∈I

φi(vi)

is an isomorphism of A-modules.

2.4. Endomorphisms of completely reducible modules. The isomorphism (2.1) to-
gether with the Schur lemma imply the following description of the endomorphism algebra
EndA(V ):

EndA(V ) =
⊕
i∈I

End(HomA(Vi, V )).

Here we assume that the endomorphisms of the zero space are zero (and so we sum over all i
such that HomA(Vi, V ) ̸= 0, in particular, the sum is finite). The EndA(V )-module structure
on HomA(Vi, V ) is given by the composition:

φ · ψ := φ ◦ ψ, φ ∈ EndA(V ), ψ ∈ HomA(Vi, V ).

3. Simple algebras

3.1. Burnside theorem. Let A be an associative algebra over an algebraically closed field
F and let V be a finite dimensional A-module. So we have an algebra homomorphism
A→ End(V ).

Proposition 3.1. If V is irreducible, then the homomorphism A→ End(V ) is surjective.

Proof. The proof is in several steps.
Step 1. Consider the A-module V ⊗M , whereM is a finite dimensional vector space (and A

acts on the first factor). We claim that every A-submodule U ⊂ V ⊗M has the form V ⊗M0,
where M0 is a subspace in M . Indeed, HomA(V, U) ↪→ HomA(V, V ⊗M). By the Schur
lemma, the target space is naturally identified with M . The subspace HomA(V, U) ⊂ M is
M0 we need: by complete reducibility, if U ̸= V ⊗M0, there is a homomorphism φ : V → U
that does not lie in M0.
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Step 2. The space V ∗ is a right A-module via (φ · a)(v) := φ(a · v), φ ∈ V ∗, v ∈ V, a ∈ A.
Note that V ∗ is irreducible (if U ′ ⊂ V ∗ is a proper submodule, then the annihilator of U ′ is
a proper A-submodule in V ).

Step 3. Recall that End(V ) is naturally identified with V ⊗V ∗. Both End(V ) and V ⊗V ∗

are A-bimodules and the isomorphism End(V ) ∼= V ⊗ V ∗ is that of A-bimodules. Replacing
A with its image in End(V ), we may assume that A ⊂ End(V ). Clearly, A ⊂ V ⊗ V ∗ is a
subbimodule. Apply Step 1 to A viewed as a left A-module. We get that A = V ⊗M ′, where
M ′ ⊂ V ∗. Applying (the obvious analog of) Step 1 to the right A-module V ⊗ V ∗, we get
A =M ⊗ V ∗, where M ⊂ V . Since V ⊗M ′ =M ⊗ V ∗, we see that M = V,M ′ = V ∗. �

3.2. Simple algebras over algebraically closed fields. Let A be an associative unital
algebra over F. We say that A is simple if it has no proper two-sided ideals. For example,
Matn(F) is a simple algebra, this can be deduced similarly to Step 3 of the proof of the
Burnside theorem.

Proposition 3.2. Let F be algebraically closed and A be a finite dimensional simple A-
algebra. Then A ∼= Matn(F) for some n.

Proof. Consider a minimal (w.r.t. inclusion) left ideal I ⊂ A (just take a left ideal of minimal
dimension). It is an irreducible left A-module. So we get a homomorphism A→ End(I). Its

injective because A is simple. It is surjective by the Burnside theorem. So A
∼−→ End(I). �

3.3. Representations of the matrix algebra. Let V be a finite dimensional vector space
over F. We are going to understand the representation theory of the algebra A = End(V ).

Proposition 3.3. Every finite dimensional A-module U is completely reducible and the only
irreducible module is V itself.

Proof. There are u1, . . . , uk ∈ U such that U = Au1 + . . . + Auk. This gives an A-module
epimorphism A⊕k � U, (a1, . . . , ak) 7→ a1u1 + . . . + akuk. Moreover, A ∼= V ⊕n, where n =
dimV and so V ⊕nk � U . Being a quotient of a completely reducible module, U is completely
reducible itself. If U is irreducible, HomA(V

⊕nk, U) ̸= 0. Therefore HomA(V, U) ̸= 0. By
the Schur lemma, V ∼= U . �

4. Semisimple algebras

Let A be a finite dimensional algebra over F (still assumed to be algebraically closed). We
say that A is semisimple, if it is a direct sum of simple algebras.

4.1. Criteria for semisimplicity. We are going to explain some criteria for semisimplicity.

Lemma 4.1. Let A be a finite dimensional associative unital algebra. Let I, J be two-sided
ideals in A consisting of nilpotent elements (we say that a ∈ A is nilpotent if an = 0 for
some n > 0). Then I + J is a two-sided ideal consisting of nilpotent elements.

The proof is left as an exercise.
So A has the unique maximal two-sided ideal consisting of nilpotent elements, it is called

the radical of A and is denoted by Rad(A).
Also we can define a distinguished element trA ∈ A∗. It sends a ∈ A to the the trace ofma,

the operator A→ A given by ma(b) = ab. Note that trA(ab) = trA(ba). So (a, b)A := trA(ab)
is a symmetric bilinear form.
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Proposition 4.2. Let A be a finite dimensional algebra over an algebraically closed field F.
The following conditions are equivalent.

(i) The algebra A is semisimple.
(ii) Rad(A) = {0}.
(iii) A is completely reducible as a left A-module.
(iv) Every finite dimensional representation of A is completely reducible.

If the characteristic of F is zero, then (i)-(iv) are equivalent to the following condition.

(v) The form (·, ·)A is non-degenerate.

Proof. Proof of (i)⇒(ii). Note that the radical of a simple algebra is zero. Also the radical
of the direct sum is the direct sum of radicals. This proves the required implication.

Proof of (ii)⇒(iii). We have an A-module filtration A = A0 ) A1 . . . ) An ) An+1 = 0
such that Ai/Ai+1 is irreducible for all i = 0, . . . , n. Consider the corresponding algebra
homomorphism φ : A →

⊕n
i=0 End(Ai/Ai+1). The inclusion a ∈ kerφ is equivalent to

aAi ⊂ Ai+1 for all i. So for any a ∈ kerφ we have an+1 = 0 and hence kerφ ⊂ Rad(A).
Therefore kerφ = {0} and we have an embedding A ↪→

⊕n
i=0 End(Ai/Ai+1) of algebras,

so, in particular, of left A-modules. The A-module
⊕n

i=0 End(Ai/Ai+1) =
⊕n

i=0(Ai/Ai+1)⊗
(Ai/Ai+1)

∗ is completely reducible. Being a submodule in a completely reducible module, A
is completely reducible.

Proof of (iii)⇒(iv) repeats (a part of) the proof of Proposition 3.3.

Proof of (iv)⇒(i). We just need thatA is completely reducible. LetA =
⊕k

i=1 V
⊕mi
i , where

all Vi are irreducible and all mi are positive. Since A is a faithful A-module (only zero acts

by zero), the same is true for
⊕k

i=1 Vi. So we get an algebra embedding A ↪→
⊕k

i=1 End(Vi).
In particular, this is a left A-module embedding. It follows that mi 6 dimVi, as the right
hand side is the multiplicity of Vi in the left A-module

⊕k
i=1 End(Vi).

On the other hand, by the Burnside theorem, the composition of the embedding A ↪→⊕k
i=1 End(Vi) with the projection to End(Vi) is surjective. It follows that mi > dimVi. We

conclude that mi = dimVi and A
∼−→

⊕k
i=1 End(Vi).

Proof of (ii)⇔(v). It is enough to show that the radical of A coincides with ker(·, ·)A
when charF = 0. Indeed, if a is in the radical, then ab is nilpotent for all b ∈ A, and
(a, b)A = 0. So Rad(A) = ker(·, ·)A. On the other hand, ker(·, ·)A is a two-sided ideal
because (ab, c)A = (a, bc)A for all a, b, c ∈ A. Also if a ∈ ker(·, ·)A, then trA(a

n) = 0 for all
n > 0. It follows that a is nilpotent (here we use that charF = 0). We see that ker(·, ·)A is
contained in the radical. This finishes the proof of (ii)⇔(v). �
4.2. Representations of semisimple algebras.

Lemma 4.3. Let A =
⊕k

i=1 End(Vi). Then the set of irreducible A-modules, to be denoted
by Irr(A), coincides with {V1, . . . , Vk}.

Proof. Let A1, A2 be associative algebras. Then any A1 ⊕ A2-module V canonically decom-
poses as V1 ⊕ V2, where Vi is an Ai-module. Namely, if ei is the unit in Ai, then Vi = eiV .
In particular, Irr(A1 ⊕ A2) = Irr(A1) ⊔ Irr(A2). The claim of the lemma follows from here
(and trivial induction). �

Often one wants to compute the number of irreducible representations of A without refer-
ring to the decomposition A =

⊕k
i=1 End(Vi).

Lemma 4.4. Let A be a semisimple algebra. Then | Irr(A)| = dimZ(A).
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Proof. This follows from the observation that the center of End(Vi) consists of scalar opera-
tors combined with Z(A1 ⊕ A2) = Z(A1)⊕ Z(A2). �
4.3. Irreducible representations of arbitrary finite dimensional algebras. Now let
A be a finite dimensional F-algebra. By (ii) of Proposition 4.2, the algebra A/Rad(A)
is semisimple. Besides Rad(A) acts by 0 on all irreducible representations. We conclude
that pulling back a representation from A/Rad(A) to A gives rise to a bijection between
Irr(A/Rad(A)) and Irr(A).

5. Finite groups

5.1. Group algebra and its semisimplicity. Let G be a finite group and F be a field. We
can form the group algebra FG of G, a vector space with basis G, where the basis elements
multiply as in G. A representation of G is the same thing as a representation of FG.

Proposition 5.1. Let F be algebraically closed and of characteristic 0. Then FG is a
semisimple algebra. In particular, any finite dimensional representation of G over F is
completely reducible.

Proof. We will check (v) of Proposition 4.2. On the basis elements, we have trFG(g) =
δg1|G|, where δg1 is the Kroneker symbol. So (g, h)FG = δg,h−1 |G|. Clearly, this form is
nondegenerate. �

We remark that this proposition is no longer true when the characteristic of F is positive.

5.2. The number of irreducible representations. By Lemma 4.4, the number of the
irreducible representations of G coincides with the dimension of the center. So let us inves-
tigate the structure of Z(FG) as a vector space.

Proposition 5.2. There is a basis bC ∈ Z(FG), where C runs over the set of conjugacy
classes in G. It is given by bC :=

∑
g∈C g.

Proof. The inclusion
∑

g∈G cgg ∈ Z(FG) is equivalent to h
∑

g∈G cgg =
∑

g∈G cggh, which in

its turn is equivalent to
∑

g∈G cg(hgh
−1) =

∑
g∈G cgg. In other words,

∑
g∈G cgg ∈ Z(FG) if

and only if the function g 7→ cg is constant on conjugacy classes. This implies the claim of
the proposition. �

6. What happens when F is not algebraically closed

First, we need to modify the second part of the Schur lemma: the endomorphism algebra
EndA(V ) is a skew-field. An analog of the Burnside theorem still works: the image of A
in End(V ) is EndS(V ), where S is the skew-field EndA(V ). The proof is somewhat more
involved. The simple algebras are precisely Matn(S), where S is a finite dimensional skew-
field over F, the proof repeats that of Proposition 3.2. An analog of Proposition 3.3 holds
for Matn(S). An analog of Proposition 4.2 holds too. The details are left to the reader.


