
LECTURE 1: REPRESENTATIONS OF SYMMETRIC GROUPS, I

IVAN LOSEV

1. Introduction

In this lecture we start to study the representation theory of the symmetric groups Sn

over C. Let us summarize a few things that we already know.
0) A representation of Sn is the same thing as a representation of the group algebra CSn.
1) As with all finite groups, any representation of Sn over C is completely reducible.
2) The number of irreducible representations of Sn coincides with the number of conjugacy

classes.
The conjugacy classes are in a natural bijection with partitions of n. Namely, we take an

element σ ∈ Sn and decompose it into the product of disjoint cycles. The lengthes of cycles
form a partition of n that is independent of the choice of σ in the conjugacy class. We assign
this partition to the conjugacy class of σ.

We would like to emphasize that 2) does not establish any preferred bijection between
the irreducible representations of Sn and the partitions of n. To establish such a bijection is
our goal in this part. We will follow a “new” approach to the representation theory of the
groups Sn due to Okounkov and Vershik, [OV]. Our exposition follows [K, Section 2]. For a
“traditional” approach based on Young symmetrizers, the reader is welcome to consult [E]
or [F].

2. Inductive approach

A key observation is that symmetric groups for different n are embedded into one another:
{1} = S1 ⊂ S2 ⊂ S3 . . . ⊂ Sn−1 ⊂ Sn ⊂ . . ., where we view Sn−1 as the subgroup of Sn fixing
n ∈ {1, . . . , n}. We could try to use “induction”, i.e., to study the irreducible representations
of Sn by restricting them to Sn−1. In fact, this naive idea does not quite work, but this is
our starting point.

2.1. Centralizer ZB(A) and restrictions of representations. We start with the follow-
ing question: given a finite dimensional semisimple associative algebra A and its semisimple
subalgebra B, understand the restriction of V ∈ Irr(A) (the set of isomorphism classes of
finite dimensional irreducible A-modules) to B. The answer to this question is controlled
by the subalgebra ZB(A) ⊂ A (the centralizer of B in A) defined by ZB(A) = {a ∈ A|ba =
ab, ∀b ∈ B}. More precisely, we have the following fact, where, recall that HomB(U, V )
stands for the space of B-module homomorphisms U → V .

Lemma 2.1. We have an isomorphism ZB(A) =
⊕

U,V End(HomB(U, V )), where the sum

is taken over all pairs (U, V ) ∈ Irr(B)× Irr(A) satisfying HomB(U, V ) ̸= {0}.

In other words, the algebra ZB(A) is semisimple and the irreducible ZB(A)-modules are
precisely the nonzero multiplicity spaces HomB(U, V ).
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Proof. Since A is semisimple, it can be identified with
⊕

V ∈Irr(A) End(V ), see Proposition

4.2 from Lecture 0. In this realization, we have ZB(A) =
⊕

V ∈Irr(A) EndB(V ). Recall from
Lecture 0, Section 3.4, that

EndB(V ) =
⊕
U

End(HomB(U, V )),

where the summation is taken over all U ∈ Irr(B) such that HomB(U, V ) ̸= {0}. �
Here is a corollary of this lemma that will be very useful for us in what follows.

Corollary 2.2. The following two conditions are equivalent:

(1) For any U ∈ Irr(B), V ∈ Irr(A), we have dimHomB(U, V ) 6 1.
(2) ZB(A) is commutative.

Proof. The algebra ZB(A) =
⊕

U,V End(HomB(U, V )) is commutative if and only if the

summands are. For a nonzero vector space W , End(W ) = MatdimW (C) is commutative if
and only if dimW = 1. This implies that (1) ⇔ (2). �

What this corollary gives us is that if (2) is satisfied, then any irreducible A-module
uniquely decomposes into the sum of irreducible B-modules, meaning that the summands
are uniquely determined as subspaces.

Remark 2.3. It is instructive to describe the structure of a ZB(A)-module on HomB(U, V )
without referring to the decompositionA =

⊕
End(V ). Let z ∈ ZB(A) and φ ∈ HomB(U, V ).

We define z ·φ ∈ HomB(U, V ) by [z ·φ](u) = z ·φ(u), for all u ∈ U . To check that this is well
defined and is compatible with the previous module structure (see Section 3.4 of Lecture 0)
is left to the reader.

2.2. The structure of Zm(n). We take A = CSn and B = CSm, where m < n. We write
Zm(n) for ZB(A). We are interested in finding generators for the algebra Zm(n).

Theorem 2.4. The algebra Zm(n) is generated by the subalgebra Zm(m), the subgroup
S[m+1,n] ⊂ Sn (fixing 1, . . . ,m and permuting m+ 1, . . . , n) and the Jucys-Murphy elements

Lk :=
∑k−1

i=1 (ik), where k ranges from m+ 1 to n.

Note that L1 = 0.

Proof. The proof is in several steps.
Step 1. Let H ⊂ G be finite groups. Then we have a basis in ZCH(CG) indexed by the

H-conjugacy classes in G. Namely, to a class c we assign an element bc ∈ ZCH(CG) given
by zc :=

∑
g∈c g. This is a straightforward generalization of Proposition 5.2 in Lecture 0.

Step 2. Let G = Sn, H = Sm. Recall that the G-conjugacy classes in G are parameterized
by cycle types, e.g., in S6 we have a conjugacy class (∗ ∗ ∗)(∗∗). The H-conjugacy classes
are parameterized by class types with marked elements m + 1, . . . , n, e.g., we have the
following S4-conjugacy classes in S6: (56∗)(∗∗), (65∗)(∗∗), (6 ∗ ∗)(5∗), (∗ ∗ ∗)(56), etc. Note

that b(∗k) = Lk −
∑k−1

j=m+1(jk) for k > m. In particular, Lk ∈ Zm(n). To a class c we assign

its degree deg c that, by definition, is equal to the number of elements in {1, . . . , n} moved
by an element in c (this is independent of the choice of the element).

Step 3. Let A be the subalgebra in CSn generated by Zm(m), S[m+1,n], Lm+1, . . . , Ln. It is
easy to see that A ⊂ Zm(n). To prove the opposite inclusion, assume that bc ̸∈ A for some
c. We pick c of minimal degree with this property. In the next four steps we will arrive at a
contradiction.
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Step 4. Assume, first, that c has more than one cycle of length at least 2. Break c into the
union of two cycle types c′, c′′, e.g., if c = (6∗∗)(5∗), then we can take c′ = (6∗∗), c′′ = (5∗).
Note that

bc′bc′′ = αbc +
∑

c0,deg c0<deg c

αc0bc0 ,

where α > 0. By our inductive assumption, bc0 ∈ A and bc′bc′′ ∈ A. So bc ∈ A, which
contradicts the choice of c.

Step 5. Now let us pick a cycle (i1, i2, . . . , ik) ∈ Sn and consider the product (i1, . . . , ik)(is, j).
If j ̸∈ {i1, . . . , ik}, then we get (i1, . . . , is, j, is+1, . . . , ik). If j ∈ {i1, . . . , ik}, then (i1, . . . , ik)(ikj)
either splits into the product of two cycles of total degree k or is a cycle of degree k − 1.

Step 6. Now suppose that the cycle in c has both an element from {1, . . . ,m} (does
not matter which, we denote it by ∗) and k ∈ {m + 1, . . . , n}. We may assume that k is
right after ∗ in the cycle. Let c′ denote the cycle obtained from c by deleting k. Then
bc′Lk = αbc +

∑
c0
αc0bc0 , where the summation is over c0 that are products of two disjoint

cycles with deg c0 = deg c or have deg c0 < deg c. This is a consequence of Step 5, as the
left hand side is the sum of products of pairs of cycles that share a common element, k.
Similarly to Step 4, we arrive at a contradiction with the choice of c.

Step 7. So either the elements in the only cycle of c are all from {1, . . . ,m}, in which case
bc ∈ Zm(m), or are all from {m+ 1, . . . , n}, in which case bc ∈ S[m+1,n]. Contradiction. �

Corollary 2.5. The following is true.

(1) Zm(m) lies in the center of Zm(n).
(2) The algebra Zn−1(n) is commutative.

Proof. The algebra Zm(n) commutes with CSm and Zm(m) ⊂ Zm(n) ∩ CSm. So Zm(m) is
in the center of Zm(n).

The algebra Zn−1(n) is generated by Zn−1(n− 1) and Ln. Since the former is central, the
algebra Zn−1(n) is commutative. �

3. Basis and weights

We will use Corollary 2.5 to construct a basis in
⊕

V ∈Irr(Sn)
V and encode elements of this

basis with n-tuples of complex numbers to be called weights.

3.1. Branching graph. Basis elements will be labelled by paths in a graph that is called the
branching graph for the symmetric groups. The vertices of this graph will be

⊔
n>1 Irr(Sn).

We draw a single arrow between V n−1 ∈ Irr(Sn−1), V
n ∈ Irr(Sn) if HomSn−1(V

n−1, V n) has
dimension 1 (by Corollary 2.5 the only other option is 0). There are no other edges.

Paths in the branching graph label bases in Hom spaces. For vertices V m ∈ Irr(Sm), V
n ∈

Irr(Sn) with m < n, denote by Path(V m, V n) the set of paths from V m to V n.

Lemma 3.1. There is a basis in HomSm(V
m, V n) indexed by Path(V m, V n).

Proof. We have V n =
⊕

V n−1,V n−1→V n V n−1. Now decompose V n−1 into the sum of irre-
ducible representations of Sn−2. Plugging this decomposition into the sum above, we get

V n =
⊕

V n−2,P∈Path(V n−2,V n)

V n−2
P ,
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where V n−2
P denotes the copy of Vn embedded into V n via V n−2 ↪→ V n−1 ↪→ V n, where

P = V n−2 → V n−1 → V n. We continue in this manner and get

V n =
⊕

V m,P∈Path(V m,V n)

V m
P .

Let φP ∈ HomSm(V
m, V n) be the embedding of V m ∼−→ V m

P ⊂ V n. We see that φP , P ∈
Path(V m, V n), is a basis in HomSm(V

m, V n). �
Remark 3.2. Note that the element φP is defined uniquely up to proportionality. Also note
that if P2 ∈ Path(V k, V m), P1 ∈ Path(V m, V n), then φP1 ◦φP2 is proportional to φP1P2 , where
P1P2 ∈ Path(V k, V n) is the concatenation of P1 and P2.

3.2. Basis and weights. If in Lemma 3.1 we takem = 1, we will get a basis in HomS1(V
1, V n) =

Hom(C, V n) = V n, we will write vP for φP in this case. By the construction, if P = V 1 →
V 2 → . . . → V n, then vP lies in V 1 uniquely embedded into V 2 that is uniquely embedded
into V 3, etc.

Lemma 3.3. The following is true.

(1) The vector vP is an eigenvector for all Jucys-Murphy elements Lk, k = 1, . . . , n.
(2) The eigenvalue of Lk on vP depends only on the V k−1 and V k components in P =

V 1 → V 2 → . . . → V n.

We postpone the proof a little bit, to give a definition and an example.

Definition 3.4. Define the weight wP = (w1, . . . , wn) ∈ Cn of the path P (or of the basis
vector vP ) by LkvP = wkvP , k = 1, . . . , n.

Example 3.5. Consider the reflection representation Rn of Sn. It can be realized as the
submodule {(x1, . . . , xn)|x1+ . . .+xn = 0} in the permutation representation Cn of Sn. The
restriction of Rn to Sn−1 decomposes as Rn−1 ⊕ T n−1, where we write T n−1 for the trivial
representation of Sn−1. The copy of Rn−1 is realized as {(x1, . . . , xn)|x1+ . . .+xn−1 = 0, xn =
0}, while the copy of T n−1 is spanned by (1, . . . , 1, 1 − n). The paths indexing the basis in
Rn are

Pm := T 1 → T 2 → Tm−1 → Rm → Rm+1 → . . . → Rn,m = 2, . . . , n.

The corresponding basis vector is vPm = (1, . . . , 1, 1 −m, 0, . . . , 0). The weight wPm equals
(0, 1, . . . ,m− 2,−1,m− 1, . . . , n− 2).

Proof of Lemma 3.3. Note that vP lies in the unique copy of V k−1 in V k. It is enough to
check that Lk acts on that copy of V k−1 by a scalar (that depends only on V k−1, V k because
Lk ∈ CSk). But Lk commutes with CSk−1 and so the operator of multiplication by Lk

gives an element in HomSk−1
(V k−1, V k). Since the dimension of the latter space is 1, the

multiplication by Lk−1 gives an endomorphism of the Sk−1-module V k−1. This endomorphism
is scalar by the Schur lemma. �

3.3. Maximal commutative subalgebra. A natural question to ask at this point is: can
two different paths P ∈ Path(V 1, V n), P ′ ∈ Path(V 1, V ′n) give the same weight? Here we
will see that the answer is “no”: a weight determines a path uniquely.

Consider the subalgebra A ⊂ CSn consisting of all elements a such that all vP are eigen-
vectors for a. In other words, if we identify End(V n) with MatdimV n(C) using the basis
vP , P ∈ Path(V 1, V n), and CSn with

⊕
V n∈Irr(Sn)

End(V n), then A is the direct sum of the
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subalgebras of diagonal matrices in MatdimV n(C). Note that A is a maximal commutative
subalgebra in CSn.

There are two alternative descriptions of A.

Proposition 3.6. The following subalgebras of CSn coincide.

(i) A introduced above.
(ii) A′ generated by Zk(k), k = 1, . . . , n.
(iii) A′′ generated by L1, . . . , Ln.

Proof. We will prove that A ⊂ A′, A′ ⊂ A′′, and A′′ ⊂ A.
Proof of A ⊂ A′. We have a basis in A labelled by the paths P ∈ Path(V 1, V n), where

V n runs over Irr(Sn). Namely, define eP by ePvP ′ = δPP ′vP ′ (i.e., eP is the diagonal matrix
element corresponding to P ). Let P = V 1 → V 2 → . . . → V n.

Define eV m ∈ CSm as the identity in the summand End(V m) of CSm =
⊕

U∈Irr(Sm) End(U)

and zero in all other summands. This element is central, in other words, eV m ∈ Zm(m). Now
consider the product eV 1eV 2 . . . eV n and its action on

⊕
Un∈Irr(Sn)

Un. Applying eV n we project

to the summand V n. Applying eV n−1 next, we project to the summand V n−1 inside V n. And
so on. From the construction of the element vP , we conclude that eV 1 . . . eV n coincides with
eP . Since eV 1 . . . eV n ∈ A′, we see that eP ∈ A′, and we are done.

Proof of A′ ⊂ A. We prove this by induction on n: suppose that Z1(1) = C, . . . , Zn−1(n−1)
lie in the subalgebra generated by L1, . . . , Ln−1. Note that Zn(n) ⊂ Zn−1(n). By Theorem
2.4, Zn−1(n) is generated by Zn−1(n− 1) and Ln. So Zn(n) ⊂ A′′ and hence A′ ⊂ A′′.

Proof of A′′ ⊂ A. By Lemma 3.3, every vP is an eigenvector for Lk. So Lk ∈ A for any k.
The inclusion A′′ ⊂ A follows. �
Corollary 3.7. If P ̸= P ′, then wP ̸= wP ′.

Proof. If wP = wP ′ , then every element a ∈ A′′ acts on vP , vP ′ with the same eigenvalue.
But eP ∈ A′′ obviously does not have this property. �
3.4. Road map. Let Wt(n) denote the set of all possible weights, this is a subset of Cn.
On Wt(n) we have an equivalence relation: we say that wP ∼ wP ′ , if P, P ′ lead to the same
irreducible V n. What we need to do to classify Irr(Sn) is to solve the following two problems:

a) Describe Wt(n).
b) Determine the equivalence relation ∼ on Wt(n).
This will be done in the next lecture.
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