
LECTURE 10: KAZHDAN-LUSZTIG BASIS AND CATEGORIES O

IVAN LOSEV

Introduction

In this and the next lecture we will describe an entirely different application of Hecke
algebras, now to the category O. In the first section we will define the Kazhdan-Lusztig basis
in the Hecke algebra of W and explain how to read the multiplicities in the category O from
this basis (the Kazhdan-Lusztig conjecture proved independently by Beilinson-Bernstein and
Brylinski-Kashiwara).

In the remainder of this lecture and in the next one, we will explain some steps towards
a proof of this conjecture based on works of Soergel and of Elias-Williamson. We will start
by defining projective functors between different infinitesimal blocks of category O. As an
application, we will show how the computation of multiplicities in Oλ for λ ∈ P reduces to
λ = 0.

1. Kazhdan-Lusztig basis and conjecture

1.1. Recap on category O. Pick a semisimple Lie algebra g over C. We have the triangular
decomposition g = n− ⊕ h⊕ n. Let W denote the Weyl group. Let ρ := 1

2

∑
α>0 α =

∑
i ωi

(where ωi denote the fundamental weight corresponding to a simple root αi). Define the
shifted action of W on h by w · λ := w(λ+ ρ)− ρ.

Recall that in Lecture 7 we have introduced the BGG category O consisting of all finitely
generated U(g)-modules with diagonalizable action of h and locally nilpotent action of n.
Also we have identified the center Z of U(g) with C[h]W · = {f ∈ C[h]|f(w · λ) = f(λ),∀w ∈
W,λ ∈ h}, where we send z ∈ Z to the polynomial f̃z such that z acts by f̃z(λ) on the Verma
module ∆(λ) = U(g) ⊗U(b) Cλ. This allowed to split O into the direct sum of infinitesimal

blocks Oλ consisting of all modules M in O, where z acts with generalized eigenvalue f̃z(λ).
We are going to be interested in Oλ, where λ ∈ P (the weight lattice) and mainly in O0 (we
will see that the study of Oλ with λ ∈ P basically reduces to the study of O0). The simple
objects in O0 are L(w · 0), w ∈ W , all of these objects are different because Wρ = {1}. We
have seen in Lecture 7 that any L(w · 0) appears in the composition series of ∆(w · 0) once,
and all other composition are L(w′ · 0), where w′ · 0 < w · 0 meaning that w · 0− w′ · 0 is a
sum of positive roots. In fact, we can take a weaker Bruhat order (getting a stronger result).

Definition 1.1. We say that u ≺ w (in the Bruhat order) if w = sβk
. . . sβ1u, where βk, . . . , β1

are roots (not necessarily simple) and ℓ(sβi
. . . sβ1u) > ℓ(sβi−1

. . . sβ1u) for all i.

In this order, the minimal element inW is 1, while the maximal element is the longest (with
respect to the length ℓ(w)) element w0 ∈ W . It is uniquely characterized by the property
that it maps the positive Weyl chamber C to −C. For W = Sn, we have w0(i) = n + 1− i
for all i.

Here are properties of ≺ to be used below.

Lemma 1.2. The following is true:
1
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(1) If u ≺ w, then u · 0 > w · 0.
(2) If u is obtained from w by deleting some elements in the reduced expression of w,

then u ≺ w.
(3) u ≼ w if and only if w0w ≼ w0u.

The proof is left as an exercise.
We will write Lw for L(w0w · 0) and ∆w = ∆(w0w · 0). One can show that if Lu is a

composition factor of ∆w, then u ≼ w. What we want to compute is the character of Lw.
Let mu

w denote the multiplicity of Lu in ∆w. Consider the multiplicity matrix M , it is
unitriangular and hence invertible. Let M−1 = (nu

w). So chLw =
∑

u≼w nu
wch∆u. So what

we need to compute is the numbers nu
w.

It is convenient to reformulate this problem. The category O0 is abelian. So we can
consider its Grothendieck group K0(O0). It is defined as the quotient of the free group
generated by the isomorphism classes of the objects M ∈ O0 modulo the relation M =
M ′⊕M ′′ if there is an exact sequence 0 → M ′ → M → M ′′ → 0. We denote the image of M
in K0(O0) by [M ]. Since the objects in O0 have finite length, the classes [Lw] form a basis
in K0(O0). Since the matrix M is uni-triangular, the same is true for [∆w]. We identify
K0(O0) with the group ring ZW in such a way that [∆w] corresponds to w. So we need to
compute the basis [Lw] =

∑
u≼w nu

wu.

Example 1.3. It is easy to compute two basis elements [Lw]. Namely, we have nw
w = 1 and

nu
w ̸= 0 ⇒ u ≼ w. This immediately implies [L1] = 1. The proof of the Weyl character

formula in Lecture 7 says [Lw0 ] =
∑

w∈W sgn(w0w)w.

In general, however, we cannot even describe the basis [Lw] staying inside ZW . This is
where the Hecke algebra comes into play.

1.2. Kazhdan-Lusztig basis. First, it will be convenient to modify the Hecke algebra
slightly. Let us recall the previous definition (in the specialization vs = v for all s ∈ S,
where S denotes the set of simple reflections in W ). The Hecke algebra Hv(W ) is generated
by elements that we will now denote by T ′

s with relations T ′
sT

′
tT

′
s . . . = T ′

tT
′
sT

′
t . . . (mst times)

and (T ′
s − v)(T ′

s + 1) = 0. Now let q be another independent variable (that has nothing to
do with a prime power). Define the Z[q±1]-algebra Hq(W ) by generators Ts with relations
TsTtTs . . . = TtTsTt . . . and (Ts − q)(Ts + q−1) = 0. Clearly, Hq(W ) = Hv(W )[q±1]/(v − q2)
with T ′

s 7→ qTs. We see that Hq(W ) has basis Tw such that

(1.1) TsTw =

{
Tsw, if ℓ(sw) = ℓ(w) + 1,

Tsw + (q − q−1)Tw, if ℓ(sw) = ℓ(w)− 1.

We have a ring involution of Hq(W ) (called the bar involution and denoted by •̄), given on
generators by q̄ := q−1, T̄s := T−1

s (= Ts + q−1 − q). Since •̄ preserves the relations, we see
that •̄ is indeed a well-defined ring involution. Note that T̄w = (Tw−1)−1.

The following fundamental result is due to Kazhdan and Lusztig, [KL].

Theorem 1.4. For any w ∈ W , there is a unique element Cw ∈ Hq(W ) such that Cw =
Tw +

∑
u≺w P u

w(q)Tu, where P u
w(q) ∈ qZ[q], and C̄w = Cw.

Since the matrix of expressing Cw’s in terms of Tw’s is uni-triangular, we see that the
elements Cw, w ∈ W, form a basis in Hq(W ). This is a so called Kazhdan-Lusztig basis.

Proof. The proof is by induction with respect to the Bruhat order: we assume that Cu

exits and is unique for all u ≺ w. Let w = si1 . . . siℓ be a reduced expression. We have
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T̄w = T̄i1 . . . T̄iℓ = (Ti1 + q−1 − q) . . . (Tiℓ + q−1 − q). Decompose T̄w in the basis Tu. We have
T̄w = Tw+

∑
u≺w Ru

w(q)Tu (all u’s are obtained by removing some simple reflections from the
reduced decomposition of w and so u ≺ w by (2) of Lemma 1.2). By the existence of Cu, what
we need to show that there is a unique P̃ u

w(q) ∈ qZ[q] such that Cw = Tw +
∑

u≺w P̃ u
w(q)Cu

and C̄w = Cw. We also have T̄w − Tw =
∑

u≺w Qu
w(q)Cu. Applying •̄ to the equation, we get

Tw − T̄w =
∑

u≺w Qu
w(q

−1)Cu and so Q̄u
w(q

−1) = −Q̄u
w(q). But we have

C̄w = T̄w +
∑
u≺w

P̃ u
w(q

−1)Cu = Tw +
∑
u≺w

Qu
w(q)Cu +

∑
u≺w

P̃ u
w(q

−1)Cu

So we need to prove that there is a unique P̃ u
w(q) ∈ qZ[q] such that P̃ u

w(q
−1)−P̃ u

w(q) = Qu
w(q).

This follows from Qu
w(q

−1) = −Qu
w(q). �

Example 1.5. We have C1 = 1 and Cs = Ts − q, where s ∈ S.
Let us consider a more interesting example: W = S3. Let s, t denote the simple reflections.

The Bruhat order is that 1 < s, t < st, ts < sts = tst (elements in the same group are not
comparable). We have

Cst = Tst−q(Ts+Tt)+q2, Cts = Tts−q(Ts+Tt)+q2, Csts = Tsts−q(Tst+Tts)+q2(Ts+Tt)−q3.

More generally, Cw0 =
∑

w∈W (−q)ℓ(w0)−ℓ(w)Tw. To check these equalities is a part of the
homework.

1.3. Kazhdan-Lusztig conjecture. We have a surjection Hq(W ) � ZW given by setting
q = 1. The following theorem was conjectured by Kazhdan-Lusztig and proved by Beilinson-
Bernstein, [BB], and Brylinski-Kashiwara, [BK].

Theorem 1.6. We have [Lw] = Cw|q=1.

By Example 1.5, this agrees with the Weyl character formula: [Lw0 ] =
∑

w∈W0
sgn(w0w)w.

This is a difficult theorem whose proof found in the 80’s required a heavy machinery and
is one of the greatest achievements of Geometric Representation theory. Recently, a more
elementary (but also difficult) proof was found, see [EW]. Starting the next section, we will
outline some ideas relevant for that proof.

1.4. Stronger version. Now we are going to explain how to recover Cw itself (not just its
specialization to 1) from the structure of Verma modules. This description was found in
[BGS].

Let M be an object of O. By head(M) we mean the maximal semisimple quotient of
M and by the radical Rad(M) we mean the kernel M � head(M). Now define the radical
filtration M0 ) M1 ) M2 ) . . . by setting Mi := Rad(Mi−1). Now take M := ∆w and for
u ≼ w definemu

w(q) :=
∑

[Mi/Mi+1 : Lu]q
i, where the square bracket denotes the multiplicity

of Lu in the composition series of Mi/Mi+1. For example, mw
w(q) = 1.

Theorem 1.7. We have Tw =
∑

u≼w mu
w(q)Cu.

Example 1.8. For g = sl2, the module ∆(1) has simple radical, ∆(−2) = L(−2). For
s ∈ S2 \ {1}, we get ms

s(q) = 1,m1
s(q) = q. Indeed, Ts = Cs + qC1.

2. Projective functors, I

We are going to explain how to reduce the study of Oλ with λ ∈ P to λ = 0.
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2.1. Tensor products with finite dimensional modules. Recall that if V is a finite
dimensional g-module and M ∈ O, then V ⊗M ∈ O. So we get the functor V ⊗• : O → O.
This functor is exact (preserves exact sequences), it has both left and right adjoints, both
are given by V ∗ ⊗ •.

Now we are going to get a partial description of V ⊗∆(λ). Pick a weight basis v1, . . . , vm
of V and let ν1, . . . , νm ∈ h∗ be the corresponding weights. We may assume that they are
ordered compatibly with the order on h∗, i.e., if νi > νj, then i > j.

Proposition 2.1. There is a filtration V ⊗ M = M0 ⊃ M1 ⊃ . . . ⊃ Mm = {0} such that
Mi−1/Mi

∼= ∆(λ+ νi).

Proof. Recall that ∆(λ) = U(g) ⊗U(b) Cλ. We claim that V ⊗∆(λ) = U(g) ⊗U(b) (V ⊗ C).
This follows from

Homg(V ⊗∆(λ),M) = Homg(∆(λ), V ∗ ⊗M) = Homb(Cλ, V
∗ ⊗M) =

= Homb(V ⊗ Cλ,M) = Homg(U(g)⊗U(b) (V ⊗ Cλ),M).

Consider the filtration V ⊗ Cλ = N0 ⊃ . . . ⊃ Nm = {0}, where Ni := SpanC(vi+1, . . . , vm).
This is b-module filtration (because n increases weights) with Ni−1/Ni = Cλ+νi . Set Mi :=
U(g)⊗U(b) Ni. Recall that U(g) is a free right U(b)-module. So the functor U(g)⊗U(b) • is
exact and we have Mi−1/Mi = U(g)⊗U(b) (Ni−1/Ni) = ∆(λ+ νi). �

Let prµ denote the functor O � Oµ that sends M ∈ O to the generalized eigenspace of
Z in M with eigenvalue µ. The functors of the form prµ(V ⊗ •) : Oλ → Oµ (and their
compositions) are known as projective functors. They are tremendously useful in the study
of O.

Corollary 2.2. The object prµ(V ⊗∆(w ·λ)) admits a filtration by ∆(λ+νi) with w ·λ+νi ∈
W · µ.

2.2. Application: translation functors. We are going to consider a special case of Corol-
lary 2.2, where it is especially easy to describe what weights νi appear.

Proposition 2.3. Assume that λ, µ ∈ P are such that λ, λ−µ, µ+ρ are dominant. Let V be
the irreducible finite dimensional module with highest weight λ−µ. Then prµ(V

∗⊗∆(w·λ)) =
∆(w · µ) and prλ(V ⊗∆(w · µ)) is filtered with ∆(wu · λ), u ∈ Wµ+ρ.

Note that Wµ+ρ is generated by the simple reflections si such that ⟨µ+ ρ, α∨
i ⟩ = 0.

Proof. To prove the claim about prµ(V
∗ ⊗∆(w · λ)) we need to find all weights ν of V ∗ such

that w · λ + ν ∈ W · µ, equivalently, λ + ρ + w−1ν = u(µ + ρ) for some u ∈ W . We have
u(µ+ ρ) 6 µ+ ρ for any u ∈ W and w−1ν > µ− λ (the lowest weight of V ∗) with equality
if and only if w = w0. So λ + ρ + w−1ν > λ + ρ + µ− λ = µ + ρ > u(µ + ρ). The equality
prµ(V

∗ ⊗∆(w · λ)) = ∆(w · µ) follows from Corollary 2.2.
The claim about prλ(V ⊗∆(w ·µ)) follows similarly using the observation that λ−w ·µ >

λ− µ for any w ∈ W , and the equality is equivalent to w ∈ Wµ+ρ. �

This proposition has several important corollaries.

Corollary 2.4. Let λ1, λ2 be dominant. Then there is an equivalence Oλ1

∼−→ Oλ2 sending
∆(w · λ1) to ∆(w · λ2).
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Proof. We may assume that λ1−λ2 is dominant. Otherwise, we replace λ1 with λ1+λ2 and
take a composed equivalence Oλ1

∼−→ Oλ1+λ2

∼−→ Oλ2 .
Apply Proposition 2.3 to λ = λ1+λ2 and µ = λ2. We get functors φ : Oµ → Oλ, φ(M) :=

prλ(V ⊗M) and φ∗ := prµ(V
∗⊗•) : Oλ → Oµ. The notation φ∗ is justified by the observation

that φ∗ is left and right adjoint to φ. We are going to prove that φ∗, φ are mutually inverse
(quasi-inverse, if we want to be precise).

Note that φ(∆(w · µ)) = ∆(w · λ) and φ∗(∆(w · λ)) = ∆(w · µ) (we have Wµ+ρ = {1}).
Also we have an adjointness homomorphism φ∗ ◦ φ(M) → M (induced by φ∗ ◦ φ(M) ↪→
V ∗⊗V ⊗M → M). This homomorphism is zero if and only if φ(M) is zero. Now apply this
to M = ∆(w · λ), we get a nonzero homomorphism ∆(w · µ) = φ∗ ◦φ(∆(w · µ)) → ∆(w · µ).
But any Verma module is generated by its highest weight vector and any endomorphism
maps that vector to its multiple. We deduce that any nonzero endomorphism of a Verma
module is an isomorphism. So φ∗ ◦ φ(M)

∼−→ M when M is a Verma module. Since any

object in Oµ is filtered by quotients of Verma modules, we see that φ∗ ◦φ(M)
∼−→ M for any

M ∈ Oλ. So φ∗ is left inverse of φ. Similarly, we see that φ∗ is a right inverse of φ. �

Now let us consider the case when µ+ρ is dominant, but Wµ+ρ is non-trivial. The simples
in Oµ are naturally labelled by W/Wµ+ρ. There is a distinguished representative in each
right coset wWµ+ρ – it is known that such a coset contains a unique longest element (w.r.t.
the length function ℓ; it also contains a unique shortest element, but we do not need this).
So it is natural to label the simples in Oµ+ρ with longest elements of right Wµ+ρ-cosets.

Corollary 2.5. Let λ, µ be such as in Proposition 2.3. Then prµ(V
∗ ⊗ L(w · λ)) = L(w · µ)

if w is longest in its right Wµ+ρ-coset wWµ+ρ and is zero else.

Sketch of proof. The proof is again based on using adjoint functors φ := prµ(V
∗ ⊗ •) and

φ∗ := prλ(V ⊗ •).
Step 1. We need to show that φ(L(w · λ)) = 0 when w is not longest in its right Wµ+ρ-

coset. In other words, we can find a simple reflection si ∈ Wµ+ρ such that ℓ(wsi) > ℓ(w). In
this case, we have a nonzero homomorphism η : ∆(wsi · λ) → ∆(w · λ). One can show that
φ(η) ̸= 0. So φ(η) is an isomorphism. In particular, φ(coker η) = 0 and hence φ(L(w·λ)) = 0.

Step 2. Now let w be longest in its right Wµ+ρ-coset. The object φ(L(w · λ)) is a quotient
of φ(∆(w · λ)) = ∆(w · µ). So we need to show that φ(L(w · λ)) ̸= 0 and that Hom(∆(w′ ·
µ), φ(L(w · λ))) = 0 if w′ · µ < w · µ (this will show that φ(L(w · λ)) is simple). The equality
follows because Hom(∆(w′ ·µ), φ(L(w ·λ))) = Hom(φ∗(∆(w′ ·µ)), L(w ·λ)) and ∆(w ·λ) does
not appear in the filtration of φ∗(∆(w′ ·µ)). On the other hand, if φ(L(w ·λ)) = 0, then the
class [φ(∆(w · λ))] is a linear combination of [φ(L(w′ · λ))] with w′ · µ < w · µ and hence of
[φ(∆(w′ · λ))] with w′ · µ < w · µ. But φ(∆(w · λ)) = ∆(w · µ) and φ(∆(w′ · λ)) = ∆(w′ · µ),
contradiction. �

Let us give a corollary of the previous two corollaries that reduces the question about the
multiplicities in the categories Oµ for λ ∈ P to λ = 0.

Corollary 2.6. Let µ be such that µ + ρ is dominant. Pick w that is longest in its right
Wλ+ρ-coset. Then [∆(u · µ) : L(w · µ)] = [∆(u · 0) : L(w · 0)].
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