
LECTURE 13: REPRESENTATIONS OF Uq(g) AND R-MATRICES

IVAN LOSEV

Introduction

In this lecture we study the representation theory of Uq(g) when q is not a root of 1.
In Section 1, we classify the finite dimensional irreducible representations of U := Uq(sl2),
sketch the proof of complete reducibility and explain what happens for a general g.

As we have seen in the previous lecture, the obvious isomorphism σ : v1 ⊗ v2 → v2 ⊗ v1 :
V1 ⊗ V2

∼−→ V2 ⊗ V1 is not U -linear. However, one can find an element R in a suitable
completion of U ⊗ U such that R ◦ σ : V1 ⊗ V2

∼−→ V2 ⊗ V1 is a U -module isomorphism. This
will be done in Section 2. This construction is of importance for knot invariants, as will be
explained in the next lecture.

1. Representation theory of Uq(g), I

Recall that, as an algebra, U is given by generators E,F,K±1 and relations

KEK−1 = q2E, KFK−1 = q−2F, EF − FE =
K −K−1

q − q−1
.

1.1. Classification of the irreducibles. Let us start by producing some examples of the
irreducible representations of U .

Example 1.1. Let us classify the one-dimensional representations. We have KEK−1 =
q2E,KFK−1 = q−2F . Since q ̸= ±1, it follows that E,F act by 0. So K − K−1 = (q −
q−1)(EF −FE) acts by 0. We deduce that K acts by ±1. Both choice give representations.
Of course, the representation, where K acts by 1, E,F act by 0, is the trivial representation,
one that is given by the counit η.

Example 1.2. The assignment E 7→
(
0 1
0 0

)
, F 7→

(
0 0
1 0

)
, K 7→

(
q 0
0 q−1

)
gives rise to a

two-dimensional representation of U . This is a so called tautological representation.

Lemma 1.3. Suppose q is not a root of 1. Let V be a finite dimensional U-module. Then
the elements E,F act on V nilpotently.

Proof. For α ∈ C×, let Vα denote the generalized eigenspace for K with eigenvalue α. It is
easy to show that EVα ⊂ Vq2α. Since q is not a root of 1, we see that all numbers q2nα are
different. It follows that E acts nilpotently. For the same reasons, F acts nilpotently. �

Now the classification of Irrfin(U) works in the same way as for U(sl2). Namely, we have
the subalgebra Uq(b) ⊂ U spanned by K,E, it has a basis KℓEm for ℓ ∈ Z,m ∈ Z>0. The
algebra U is a free right module over Uq(b) with basis F k, k ∈ Z>0. Then, for α ∈ C×, we
can form the Verma module ∆q(α) := U ⊗Uq(b) Cα, where K acts on Cα by α and E acts by
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0. The U -module ∆q(α) has basis vk := F kvα, k ∈ Z>0. The action of F,K,E in this basis
is given by

Fvk = vk+1, Kvk = q−2kαvk, Evk = [k]q
αq1−k − α−1qk−1

q − q−1
vk−1.

The third equation follows from

(1.1) [E,F n] = [n]qF
n−1Kq

1−n −K−1qn−1

q − q−1
.

Theorem 1.4. Suppose q is not a root of 1. Then the finite dimensional irreducible U-
modules are in one-to-one correspondence with the set {±qn}n∈Z>0

. The module L(±qn), the
irreducible quotient of ∆q(±qn), has basis u0, . . . , un, where the action of the generators is
given by

Kui = ±qn−2iui, Fui = [n− i]qui+1, Eui = ±[i]qui−1.

Proof. As in the proof for U , we need to understand when ∆q(α) has a proper quotient.

This is only possible when Evk = 0. The number [k]q =
qk−q−k

q−q−1 is never zero thanks to our

assumption that q is not a root of 1. So Evk = 0 if and only if

αq1−k − α−1qk−1

q − q−1
= 0 ⇔ α2 = q2(k−1) ⇔ α = ±qk−1.

In this case, we have a k-dimensional quotient of ∆q(α). Thanks to the standard universal
property of ∆q(α), every simple module is a quotient of one of ∆q(α) (and it is easy to see
that α is recovered uniquely from the simple module). We set uk := vk/[n− k]q!. �
Example 1.5. The modules from Example 1.1 are L(±1). The module from Example 1.2
is L(q). Note that L(−qn) = L(−1) ⊗ L(qn). Thanks to this, one usually only studies the
modules L(qn).

1.2. Complete reducibility. We can introduce the quantum Casimir element

C = FE +
Kq +K−1q−1

(q − q−1)2
∈ U.

One can show (this is a part of the homework) that this element is central in U .

Theorem 1.6. Let q be not a root of 1. Then any finite dimensional U-module is completely
reducible.

Proof. For vα ∈ ∆q(α), we get Cvα = αq+α−1q−1

(q−q−1)2
vα. In particular, we see that all scalars of

the action of C on L(±qn) are distinct. As in the case of U(sl2), we only need to prove that
L(±qn) has no self-extensions. This is done similarly to that case. �
1.3. General Uq(g). We assume that q is not a root of 1. Let g be a semisimple Lie algebra
with generators ei, hi, fi, i = 1, . . . , n. Let us explain the classification of finite dimensional
irreducible Uq(g)-modules.

Theorem 1.7. Any finite dimensional representation of Uq(g) is completely reducible.

Let us explain how to classify the finite dimensional irreducible representations. First, let
us consider the one-dimensional representations. On such a representation, all elements Ei, Fi

act by 0, and the elements Ki act by ±1. So for κ ∈ {±1}n, we have the one-dimensional
module L(κ), where Ki acts by κi.
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Modulo these 2n modules, the finite dimensional representation theory of Uq(g) looks just
like the representation theory of g. Recall that P+ denotes the set of dominant weights.

Theorem 1.8. There is a bijection {±1}n × P+ ∼−→ Irrfin(Uq(g)) that sends (κ, λ) to a
unique finite dimensional irreducible module L(κqλ) that has a highest vector vλ such that
Eivλ = 0, Kivλ = κiq

λ(α∨
i )vλ.

We do not provide a proof. We note that this description implies L(κqλ) = L(κ)⊗L(qλ).
To finish let us point out that one can define the notion of a character of L(qλ) in a natural

way. The character is given by the Weyl character formula.

2. Universal R-matrix

2.1. Three coproducts. Recall the coproduct ∆ : U → U⊗2 given on the generators by

∆(K) = K ⊗K,∆(E) = E ⊗ 1 +K ⊗ E,∆(F ) = F ⊗K−1 + 1⊗ F.

The opposite coproduct ∆op := σ ◦∆, where σ denotes the permutation of the tensor factors
is then given by

∆op(K) = K ⊗K,∆op(E) = E ⊗K + 1⊗ E,∆op(F ) = F ⊗ 1 +K−1 ⊗ F.

We want to find an element R ∈ U⊗2 (in fact, we will have to use a completion) such
that R∆op(u) = ∆(u)R. If V1, V2 are U -modules, then the map RV1,V2 ◦ σ : V1 ⊗ V2 →
V2 ⊗ V1, v1 ⊗ v2 7→ RV1,V2(v2 ⊗ v1) is an isomorphism of U -modules.

In order to produce R, we will need the third coproduct, ∆′, given by

∆′(K) = K ⊗K,∆′(E) = E ⊗ 1 +K−1 ⊗ E,∆′(F ) = F ⊗K + 1⊗ F.

This coproduct is obtained from ∆ by a twist with an anti-involution τ of Uq given by
τ(K) = K−1, τ(E) = E, τ(F ) = F . Then ∆′(u) = τ ⊗ τ(∆(τ(u))). This equality implies
that ∆′ also gives a coassociative coproduct on U (or we can check this directly). We will
produce R as a product ΘΨ with Θ−1∆(u)Θ = ∆′(u) and Ψ−1∆′(u)Ψ = ∆op(u).

2.2. Construction of Θ. Let us construct Θ. This will be an infinite sum of the form∑∞
n=0 anF

n ⊗ En, where we will find the coefficients an from Θ∆′(E) = ∆(E)Θ.

Θ∆′(E) = ∆(E)Θ

⇔(
∞∑
n=0

anF
n ⊗ En)(E ⊗ 1 +K−1 ⊗ E) = (E ⊗ 1 +K ⊗ E)(

∞∑
n=0

anF
n ⊗ En)

⇔
∞∑
n=0

an(F
nE ⊗ En + F nK−1 ⊗ En+1) =

∞∑
n=0

an(EF
n ⊗ En +KF n ⊗ En+1)

⇔
∞∑
n=0

an[E,F
n]⊗ En =

∞∑
n=0

an(F
nK−1 −KF n)⊗ En+1

⇔an+1[E,F
n+1] = an(F

nK−1 −KF n).

By (1.1), we get [E,F n+1] = [n + 1]qF
nKq−n−K−1qn

q−q−1 . On the other hand F nK−1 − KF n =

F n(K−1 − q−2nK). Therefore

an+1[n+ 1]qF
nKq

−n −K−1qn

q − q−1
= anF

n(K−1 − q−2nK) ⇔ an+1 =
(q−1 − q)q−n

[n+ 1]q
an.
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We conclude that

(2.1) Θ =
∞∑
n=0

(q−1 − q)nq−n(n−1)/2

[n]q!
F n ⊗ En.

One can show that Θ∆′(K) = ∆(K)Θ (this is almost immediate) and that Θ∆′(F ) = ∆(F )Θ
(this is a computation very similar to what was done above).

Example 2.1. Let us compute ΘV⊗V , where V = L(q). We have ΘV⊗V = 1+(q−1−q)F⊗E.
Let us write this operator as a matrix. Let v1, v2 (resp., v′1, v

′
2) be the natural basis in the

first and in the second factor. Then in the basis v1 ⊗ v′1, v1 ⊗ v′2, v2 ⊗ v′1, v2 ⊗ v′2 we get the

following matrix of Θ:


1 0 0 0
0 1 0 0
0 q−1 − q 1 0
0 0 0 1

.

2.3. Construction of Ψ. An element Ψ satisfying Ψ∆op(u) = ∆′(u)Ψ will depend only on
K. But it is not expressed in terms of algebraic functions in q,K (we have to use log’s). So
we will just define ΨV2⊗V1 : V2 ⊗ V1 → V2 ⊗ V1, where K acts on V2, V1 with powers of q (we
can also define Ψ as an element of the idempotent completion of U⊗U , where we add infinite
sums

∑
λ,µ aλµπλ ⊗ πµ, where λ, µ ∈ {±qn} and πλ acts on a U -module V as the projection

to Vλ). Let ΨV2⊗V1(vn ⊗ um) = ψ(n,m)vn ⊗ um, where vn ∈ V2, um ∈ V1 are K-eigenvectors
with eigenvalues qn, qm, and ψ is a function we need to determine. We have

Ψ∆op(E)(vn ⊗ um) = Ψ(E ⊗K + 1⊗ E)(vn ⊗ um) = Ψ(qmEvn ⊗ um + vn ⊗ Eum) =

= qmψ(n+ 2,m)Evn ⊗ um + ψ(n,m+ 2)vn ⊗ Eum.

∆′(E)Ψ(vn ⊗ um) = ψ(n,m)(K−1 ⊗ E + E ⊗ 1)(vn ⊗ um) =

= ψ(n,m)(Evn ⊗ um + q−nvn ⊗ Eum).

Ψ∆op(E) = ∆′(E)Ψ ⇔ ψ(n+ 2,m) = q−mψ(n,m) and ψ(n,m+ 2) = q−nψ(n,m).

Conversely, for any ψ satisfying the conditions above, we have Ψ∆op(u) = ∆′(u)Ψ. Indeed,
for u = K this holds for any ψ and for u = F the conditions on ψ are equivalent to what
we had above. Note that to recover ψ we just need to specify the values ψ(α, β) when
α, β ∈ {−1, 0}.

Example 2.2. Let us consider the case when V1 = V2 = V = L(q). We set ψ(−1,−1) = q.
Then ψ(1,−1) = ψ(−1, 1) = 1, ψ(1, 1) = q−1. In the same basis as in Example 2.1, we get
ΨV⊗V = diag(q−1). So

RV⊗V = ΘV⊗VΨV⊗V =


q−1 0 0 0
0 1 0 0
0 q−1 − q 1 0
0 0 0 q−1

 , RV⊗V ◦ σ =


q−1 0 0 0
0 0 1 0
0 1 q−1 − q 0
0 0 0 q−1

 .

Of course, it is easy to check directly that R ◦ σ : V ⊗ V → V ⊗ V is U -linear. This
is the case that we will mostly need. But for higher dimensional V1, V2 constructing an
isomorphism by hand is very hard.

2.4. Yang-Baxter equation. We have constructed an isomorphism RV2⊗V1 ◦σ : V1⊗V2 →
V2⊗V1. Now pick three U -modules, V1, V2, V3. We can produce two isomorphisms V1⊗V2⊗
V3 → V3 ⊗ V2 ⊗ V1 by using the isomorphisms of the form R?⊗? ◦ σ (note that applying this
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to V1 and V3 and inserting idV2 in the middle does not give a U -linear map). Let us write
τ?,? for R?⊗? ◦ σ.

V1 ⊗ V2 ⊗ V3

V2 ⊗ V1 ⊗ V3 V2 ⊗ V3 ⊗ V1

V3 ⊗ V2 ⊗ V1

V1 ⊗ V3 ⊗ V2 V3 ⊗ V1 ⊗ V2

�
�
��

-

@
@
@R

@
@
@R

-
�
�
��

τV1,V2 ⊗ idV3

idV1 ⊗τV2,V3

τv1,V3 ⊗ idV2

idV2 ⊗τV1,V3

τV2,V3 ⊗ idV1

idV3 ⊗τV1,V2

We want this diagram to commute (the hexagon axiom). Note that the top isomorphism
is (R23R13R12)V3⊗V2⊗V1 ◦ σ13, while the bottom isomorphism is (R12R13R23)V3⊗V2⊗V1 ◦ σ13.
Here the notation is as follows. We write R12 for R⊗ 1 ∈ U ⊗̃3 (where we put ⊗̃ to indicate
that we take a completion) and R23 for 1 ⊗ R. The notation R13 means

∑
iR

1
i ⊗ 1 ⊗ R2

i ,
where R =

∑
iR

1
i ⊗ R2

i . We write σ13 for the permutation u⊗ v ⊗ w 7→ w ⊗ v ⊗ u. So the
hexagon diagram is commutative provided

(2.2) R12R13R23 = R23R13R12.

This is the quantum Yang-Baxter equation (shortly, QYBE) that first appeared in Statistical
Physics and was an initial motivation for introducing quantum groups.

Theorem 2.3. QYBE holds for R ∈ U⊗̃U .

We omit the proof.

2.5. Braid group representation. There is an alternative way to view QYBE when we
are dealing with the n-fold tensor product of a single U -module V . Define the U -module
automorphism τi,i+1 of V

⊗n as id⊗i−1
V ⊗τV,V ⊗ idn−1−i (we permute the ith and i+1th copies).

The hexagon axiom gives τi,i+1τi+1,i+2τi,i+1 = τi+1,i+2τi,i+1τi+1,i+2 for all i ∈ {1, . . . , n − 1}.
Clearly, τi,i+1τj,j+1 = τj,j+1τi,i+1 if |i− j| > 1.

Definition 2.4. The braid group Bn is the group with generators T1, . . . , Tn−1 and relations
TiTj = TjTi when |i− j| > 1 and TiTi+1Ti = Ti+1TiTi+1.

So we have a representation of Bn in V ⊗n given by Ti 7→ τi,i+1. When V = L(q), one can
verify this directly without referring to Theorem 2.3. Now note that τ = τ1,2 ∈ End(V ⊗ V )
satisfies τ 2 = 1+ (q−1 − q)τ . In other words, the action of CBn on V ⊗n factors through the
Hecke algebra Hq−1(n).

Remark 2.5. Let g be a finite dimensional semisimple Lie algebra so that we can form the
quantum group Uq(g). We still have the universal R-matrix R ∈ Uq(g)⊗̃Uq(g) satisfying
QYBE and such that RV2⊗V1 ◦ σ : V1 ⊗ V2 → V2 ⊗ V1 is an isomorphism of Uq(g)-modules. It
was constructed by Drinfeld.


