LECTURE 13: REPRESENTATIONS OF U,(g) AND R-MATRICES

IVAN LOSEV

INTRODUCTION

In this lecture we study the representation theory of U,(g) when ¢ is not a root of 1.
In Section 1, we classify the finite dimensional irreducible representations of U := U,(sly),
sketch the proof of complete reducibility and explain what happens for a general g.

As we have seen in the previous lecture, the obvious isomorphism o : v; ® v9 — v ® vy :
Vi ® Ve = Vo, ® Vi is not U-linear. However, one can find an element R in a suitable
completion of U ® U such that Roo : V; ® Vo = Vo, ® V; is a U-module isomorphism. This
will be done in Section 2. This construction is of importance for knot invariants, as will be
explained in the next lecture.

1. REPRESENTATION THEORY OF U,(g), I

Recall that, as an algebra, U is given by generators £, F, K*! and relations
K- K1

KEK'=¢E, KFK'=q¢?F FEF-FFE= —
q—4q

1.1. Classification of the irreducibles. Let us start by producing some examples of the
irreducible representations of U.

Example 1.1. Let us classify the one-dimensional representations. We have KEK ™! =
¢PE,KFK™' = ¢ 2F. Since q # +1, it follows that E, F act by 0. So K — K~ ! = (¢ —
¢ Y (EF — FE) acts by 0. We deduce that K acts by 1. Both choice give representations.
Of course, the representation, where K acts by 1, E, ' act by 0, is the trivial representation,
one that is given by the counit 7.

Example 1.2. The assignment E (8 é ,F = (1) 8 K — g
two-dimensional representation of U. This is a so called tautological representation.

0 . .
! gives rise to a

Lemma 1.3. Suppose q is not a root of 1. Let V' be a finite dimensional U-module. Then
the elements E, F' act on V nilpotently.

Proof. For a € C*, let V,, denote the generalized eigenspace for K with eigenvalue a. It is
easy to show that EV, C Vj,. Since ¢ is not a root of 1, we see that all numbers ¢*"« are
different. It follows that E acts nilpotently. For the same reasons, F' acts nilpotently. O

Now the classification of Irry;,(U) works in the same way as for U(sly). Namely, we have
the subalgebra U,(b) C U spanned by K, F, it has a basis K*E™ for { € Z,m € Z-y. The
algebra U is a free right module over U,(b) with basis F*, k € Z-y. Then, for a € C*, we
can form the Verma module A,(a) := U ®y,s) Ca, where K acts on C, by a and E acts by
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0. The U-module A,(a) has basis vy := F¥v,, k € Zso. The action of F, K, E in this basis
is given by
ag — a~lgh

q—qt

—ok
Fo, = v, Kup=q "o, Eu = [k, Vg—1.

The third equation follows from
Kqi=" — K—1g»!
¢—q" '
Theorem 1.4. Suppose q is not a root of 1. Then the finite dimensional irreducible U -
modules are in one-to-one correspondence with the set {+q" }nez.,. The module L(+q"), the

irreducible quotient of A,(£q™), has basis uo, ..., u,, where the action of the generators is
gien by

(1.1) [E,F"] = [n] ™!

Ku; = +¢" % u;, Fu; = [n — i) quiv1, Bu; = £[i]ui—1.

Proof. As in the proof for U, we need to understand when A,(«) has a proper quotient.
This is only possible when Ev, = 0. The number [k], = q::qq,l is never zero thanks to our
assumption that ¢ is not a root of 1. So Fv, = 0 if and only if

agtF — qlgk1

q—qt
In this case, we have a k-dimensional quotient of A (). Thanks to the standard universal

property of A,(«a), every simple module is a quotient of one of A («) (and it is easy to see
that « is recovered uniquely from the simple module). We set uy := vy /[n — k] . O

2(k—1)

=0ea’=gq o a=+¢"t

Example 1.5. The modules from Example 1.1 are L(41). The module from Example 1.2

is L(q). Note that L(—¢") = L(—1) ® L(¢"). Thanks to this, one usually only studies the

modules L(q").

1.2. Complete reducibility. We can introduce the quantum Casimir element

Kq + K—l q—l
(¢—q')

One can show (this is a part of the homework) that this element is central in U.

C=FF+ e U.

Theorem 1.6. Let g be not a root of 1. Then any finite dimensional U-module is completely
reducible.

Proof. For v, € A (), we get Cv, = O‘("qt“q—:ll‘l);lva. In particular, we see that all scalars of
the action of C' on L(£¢") are distinct. As in the case of U(slz), we only need to prove that

L(+£4¢™) has no self-extensions. This is done similarly to that case. 0J

1.3. General U,(g). We assume that ¢ is not a root of 1. Let g be a semisimple Lie algebra
with generators e;, h;, fi,i = 1,...,n. Let us explain the classification of finite dimensional
irreducible U,(g)-modules.

Theorem 1.7. Any finite dimensional representation of U,(g) is completely reducible.

Let us explain how to classify the finite dimensional irreducible representations. First, let
us consider the one-dimensional representations. On such a representation, all elements E;, F;
act by 0, and the elements K; act by +1. So for k € {£1}", we have the one-dimensional
module L(k), where K; acts by k;.
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Modulo these 2" modules, the finite dimensional representation theory of U,(g) looks just
like the representation theory of g. Recall that P™ denotes the set of dominant weights.

Theorem 1.8. There is a bijection {£1}" x Pt = TIrry;,(U,(g)) that sends (k,\) to a
unique finite dimensional irreducible module L(kq) that has a highest vector vy such that
Evy, =0, Kjv, = fﬁ;iq’\(o‘iv)m.

We do not provide a proof. We note that this description implies L(k¢) = L(k) ® L(q").
To finish let us point out that one can define the notion of a character of L(¢) in a natural
way. The character is given by the Weyl character formula.

2. UNIVERSAL R-MATRIX

2.1. Three coproducts. Recall the coproduct A : U — U®? given on the generators by
AK)=K®K,AE)=E®1+KEAF)=FK '+1F.
The opposite coproduct A°? := go A, where o denotes the permutation of the tensor factors
is then given by
APK) =K K A?E)=EQK+1E,A?F)=F®1+K '®F.
We want to find an element R € U®? (in fact, we will have to use a completion) such
that RA?(u) = A(u)R. If V4, Vs are U-modules, then the map Ry, 1,00 @ Vi ® Vo —

Vo @ V1,01 @ vg = Ry, v, (V2 ® v1) is an isomorphism of U-modules.
In order to produce R, we will need the third coproduct, A’, given by

ANK)=KoKNE)=E®1+K '@EAN(F)=FK+1®F.

This coproduct is obtained from A by a twist with an anti-involution 7 of U, given by
7(K) = K ',7(E) = E,7(F) = F. Then A'(u) = 7 ® 7(A(7(u))). This equality implies
that A’ also gives a coassociative coproduct on U (or we can check this directly). We will

produce R as a product O with O 'A(u)O = A’(u) and WA (u)¥ = AP (u).

2.2. Construction of ©. Let us construct ©. This will be an infinite sum of the form
Yo ganF™ ® E™, where we will find the coefficients a,, from ©A’(E) = A(E)O.

OA(E) = A(E)O

&) aFr@E)E@1+K'®E) = (E®1+K®E)()_ a,F"®E")

n=0 n=0

&> a(F"E®E"+ F'K '@ E") =) a,(EF"® E"+ KF" @ E"")

<:>Zan[E7 Fn} Q E" = Zan(Fanl _ KFn) ® Entl
n=0 n=0

Sy [E, F" Y = a,(F"K ' — KF™).
By (1.1), we get [E, F*™Y] = [n 4 1], F"EC"=K 74" On the other hand F'K ' — KF" =

4—q
F*(K~! — ¢ ?"K). Therefore
Kg™ — K-1g I (' —q)q™
n 1], F" =a, F"(K " —q¢ "K) & a1 = ————ay.
a +1[7’L+ ]q q— q_l a ( q ) Qn+1 [n+ 1](1 a
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We conclude that
n,—n(n—1)/2

00 -1 _
n=0

]!

One can show that ©A'(K) = A(K)© (this is almost immediate) and that OA'(F') = A(F)O
(this is a computation very similar to what was done above).

Example 2.1. Let us compute Oy gy, where V = L(q). We have Oygy = 1+ (¢! —q) FQE.

Let us write this operator as a matrix. Let vy, vy (resp., v}, v}) be the natural basis in the

first and in the second factor. Then in the basis v; ® v}, v; ® v, vo ® v}, V9 ® v, we get the
1 0 0 0

: . 0 1 00
following matrix of ©: 0 ¢log 10
0 0 0 1

2.3. Construction of . An element VU satisfying WA (u) = A’'(u)¥ will depend only on
K. But it is not expressed in terms of algebraic functions in ¢, K (we have to use log’s). So
we will just define Wy, gy, : Vo @ Vi — Vo ® Vi, where K acts on V3, Vi with powers of ¢ (we
can also define ¥ as an element of the idempotent completion of U @ U, where we add infinite
sums ZA’M ax, Ty ® 7, where A, ;1 € {£¢"} and 7y acts on a U-module V' as the projection
to Vi). Let Uy,ev, (Un @ Up) = ¥(n, m)v, ® u,y,, where v, € Va, u,, € Vi are K-eigenvectors
with eigenvalues ¢", ¢, and 1 is a function we need to determine. We have

VAP (E)(vn @ Up) =V (EQ@ K +1® E)(v, ® Uy,) = V(" Ev, ® Up + vy @ Etyy,) =

=q¢"Y(n+2,m)Ev, ® uy, + Y(n,m + 2)v, @ Ety,.

A (E)¥ (v, @ up) =Y(n,m)(K '@ E+E®1)(v, @ uy,) =

=YP(n,m)(Ev, ® Uy + ¢ "v, @ Euy,).

VAP(E) = A'(E)¥ < ¢(n+2,m) =q ™p(n,m) and ¥(n,m + 2) = ¢ "(n,m).
Conversely, for any 1 satisfying the conditions above, we have WA (u) = A’(u)¥. Indeed,

for w = K this holds for any ¢ and for v = F' the conditions on v are equivalent to what
we had above. Note that to recover 1) we just need to specify the values ¢ («, 3) when

a, B € {-1,0}.

Example 2.2. Let us consider the case when V; = Vo =V = L(q). We set ¥(—1,—1) = q.
Then 9(1,—1) = ¢(—1,1) = 1,9(1,1) = ¢ *. In the same basis as in Example 2.1, we get
Uy ey = diag(qg™"). So

g ! 0 0 0 g' 0 0 0

0 1 0 0 0 0 1 0

Rygy = Oygy¥yey = 0 qfl —q 1 0 , Rygyoo= 0 1 qfl —q 0
0 0 0 ¢t 0 O 0 g !

Of course, it is easy to check directly that Roo : V®V — V ® V is U-linear. This
is the case that we will mostly need. But for higher dimensional Vi, V5, constructing an
isomorphism by hand is very hard.

2.4. Yang-Baxter equation. We have constructed an isomorphism Ry,gy, 0o : Vi ® Vo —
Vo ® V. Now pick three U-modules, Vi, V5, V3. We can produce two isomorphisms V; ® Vo ®
Vs — V3 ® Vo ® V) by using the isomorphisms of the form Rsgr 0 o (note that applying this
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to V1 and V5 and inserting idy, in the middle does not give a U-linear map). Let us write
T2.2 for R?®? 0.

Vo @ Vi @ Vs—ufms, 1, @ V3 1

Vi,V @ IV \T‘\/%Vs ®idy,

VioVh,eVs Vi@ VeW

idy; ®7Tvy, v idvy ®7v, v

Vi@Vs® Vil ooy o)

We want this diagram to commute (the hexagon axiom). Note that the top isomorphism
is (R23R13R12)V3®V2®V1 o 013, while the bottom iSOHlOI'phiSHl is (R12R13R23>V3®V2®V1 O 013.
Here the notation is as follows. We write Ry for R® 1 € U 3 (where we put ® to indicate
that we take a completion) and R* for 1 ® R. The notation Ry3 means >, R} ® 1 ® R?,
where R = >, R} ® R?. We write 013 for the permutation u ® v @ w — w ® v ® u. So the
hexagon diagram is commutative provided

(22) R12R13R23 = R23R13R12-

This is the quantum Yang-Baxter equation (shortly, QYBE) that first appeared in Statistical
Physics and was an initial motivation for introducing quantum groups.

Theorem 2.3. QYBE holds for R € URU.

We omit the proof.

2.5. Braid group representation. There is an alternative way to view QYBE when we
are dealing with the n-fold tensor product of a single U-module V. Define the U-module
automorphism 7; ;11 of V& as id%?i_l QTv,v @id" 1 (we permute the ith and i+ 1th copies).
The hexagon axiom gives T, ;417i11,i42Tii+1 = Tit1i+2Tii+1Ti+1,i+2 for all ¢ € {1,...,n —1}.
Clearly, Tii+1T55+1 = T5.5+1T5,i+1 if |Z — ]| > 1.

Definition 2.4. The braid group B, is the group with generators 77, ..., 7,1 and relations
T,T; = TyT, when |i — j| > 1 and T,Ty41 Ty = Tyyy T T

So we have a representation of B, in V®" given by T; — 7;,41. When V = L(q), one can
verify this directly without referring to Theorem 2.3. Now note that 7 = 7,5 € End(V @ V)
satisfies 72 =1+ (¢! — ¢)7. In other words, the action of CB, on V®" factors through the
Hecke algebra H,-1(n).

Remark 2.5. Let g be a finite dimensional semisimple Lie algebra so that we can form the
quantum group U,(g). We still have the universal R-matrix R € U,(g)®U,(g) satisfying
QYBE and such that Ry,gy, 00 : Vi ® Vo — Vo ® V] is an isomorphism of U, (g)-modules. It
was constructed by Drinfeld.



