
LECTURE 14: LINK INVARIANTS FROM QUANTUM GROUPS

IVAN LOSEV

Introduction

In this lecture we explain how to construct invariants of links from representations of
quantum groups. We use the representation V = L(q) of Uq(sl2) to produce the invariant
known as the Jones polynomial.

We start in Section 1 by recalling the basic notions of knot theory and introducing the
Jones polynomial. The definition can be used to show its uniqueness but not existence.

One way to prove the existence of the Jones polynomial is to relate links to braids. Any
link can be obtained as a braid closure. A link invariant then corresponds to a Markov trace
on the braid groups, a collection of maps Bn → X (where X is some set) satisfying certain
compatibility relations. We produce such a trace from the Bn-action on V ⊗n.

In the last section we explain another way to produce link invariants from representations
of quantum groups due to Reshetikhin and Turaev. It is better computationally, one can
compute the invariant directly from the diagram. More generally, a construction produces a
homomorphism of suitable quantum group modules from a tangle.

1. Background from knot theory

1.1. Links and their diagrams. By a link we mean a continuous embedding of S1⊔ . . .⊔S1

(the disjoint union of k circles) into R3. A link with a single component is called a knot.
We view links up to isotopy (a continuous family of diffeomorphisms of R3). We can also
consider oriented knots and links.

Usually, knots and links are presented by their two dimensional diagrams by picking a
suitable projection R3 → R2. Namely, we consider projections that have simple transverse
intersections, i.e. we do not allow tangent strands or three strands intersecting in a single
point. See examples in Picture 1.1.

We can speak about isotopic diagrams – we use continuous families of diffeomorphisms
of R2. But isotopic links may have a non-isotopic diagrams. One can consider so called
Reidemeister moves (see Picture 1.2), they take a piece of a diagram and transform it in
such a way that change an isotopy class of a diagram but not of a link.

Theorem 1.1. Two diagrams correspond to isotopic (oriented) links if and only if they can be
obtained from one another by diagram isotopies and (oriented, just put various orientations
on the fragments) Reidemeister moves.

There is no algorithm however to test whether two diagrams can be obtained from one
another as described in the theorem. So one tries to produce invariants of (oriented) diagrams
that are preserved by diagram isotopies and Reidemeister moves and that are algorithmically
computable.
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1.2. Jones polynomial. Let us take a small circle in a diagram that contains precisely one
intersection of strands. Then the diagram inside the circle looks like one of two fragments
L+ or L−, see Picture 1.3, that are not isotopic (inside the circle). Another fragment we
can have inside the circle is L0. Now consider the ambient links that are the same outside
the circle and are equal to L+, L0, L− inside it. Abusing the notation we still denoted these
links by L+, L−, L0.

Theorem 1.2. There is a unique oriented link invariant L 7→ P (L) ∈ Z[q±1] such that
q−2P (L+)− q2P (L−) = (q−1 − q)P (L0) (skein relation) whose value on the trivial link with
n components (unlink) is (q + q−1)n−1.

Theorem implies that P (L)|q=1 = 2k−1, where k is the number of components.
It is possible to compute this invariant algorithmically. Namely, pick a point on a diagram

and move this point according to the orientation. When we reach a crossing we put the
strand we are on on top if it was on the bottom. If the diagram has changed, we write the
skein relation expressing the Jones polynomial of the previous diagram as the sum of two.
When we return to the starting point we will get the expression for the original polynomial
in terms of a bunch of summands with one less crossing and a summand, where the link
component we are on became untangled (meaning that it gives a trivial embedding S1 ↪→ R3

that is not linked to other components).

Example 1.3. We compute the Jones polynomial of the Hopf link oriented as in Picture
1.1 (two different orientations may – and will – give different Jones polynomials). Let us
consider the upper crossing point, see Picture 1.4. Then our initial Hopf link gives L− so
we will write L̃− for that link. Switching the crossing to L+, we’ll get the link L̃+ that
is two unlinked circles. Switching the crossing to L0, we’ll get L̃0 that is the unknot. So
P (L̃+) = q + q−1 and P (L̃0) = 1. From the skein relation, we find

q−2P (L̃+)− q2P (L̃−) = (q−1 − q)P (L̃0) ⇒ P (L̃−) = q−4(q + q−1)− q−2(q−1 − q) = q−5 + q−1.

Example 1.4. For the trefoil K in Picture 1.1 we have P (K) = q2 + q6 − q8, see Picture
1.5 for some explanation.

2. Jones polynomial as Markov trace

2.1. Braids, geometrically. Recall the braid group Bn introduced in the previous lecture.
It admits a geometric presentation similar (and closely related) to links. We will write Bg

n

for this realization. As a set Bg
n consists of the configurations of n strands in R2 × [0, 1]

connecting points (i, 0, 0) to points (j, 0, 1) (one-to-one), where i, j = 1, . . . , n, in some order
in such a way that

(a) each strand projects isomorphically to [0, 1]
(b) and the strands do not intersect.

We identify two braids that are obtained by an isotopy (fixing the 2n points and preserving
the conditions above). We can present braids by braid diagrams, see Picture 2.1.

Proposition 2.1. Two braid diagrams give isotopic braids if one is obtained from the other
by a sequence of diagram isotopies and Reidemeister moves (R2) and (R3) (condition (a)
prohibits the situation in (R1)). Let Bg

n denote the set of all these geometric braids.

The set Bg
n admits an associative product (concatenation, Picture 2.2). This product has

a unit given by the trivial braid (straight strands connecting (i, 0, 0) to (i, 0, 1) for each i).
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As a monoid Bg
n is generated by the braids Ti, T

−1
i presented on Picture 2.3. That these

elements generate Bg
n should be clear from Picture 2.4 (just perturb the diagram so that

the projections of all crossings to [0, 1] are distinct). (R2) precisely says that Ti and T−1
i

are inverse to one another, so our notation is justified. In particular, Bg
n is a group rather

than just a monoid. Note that TiTj = TjTi when |i − j| > 1 (via a diagram isotopy). Also
TiTi+1Ti = Ti+1TiTi+1, this is precisely (R3). So we get a group epimorphism Bn � Bg

n. The
following result is a consequence of Proposition 2.1.

Theorem 2.2. The epimorphism Bn � Bg
n is an isomorphism.

2.2. Braids vs links. Given a braid b, we orient it from right to left. Then we can take
the so called braid closure, see Picture 2.5, and get an oriented link. The following result is
due to Alexander.

Theorem 2.3. Any oriented link is the closure of some braid.

Now let us figure out when two braids b ∈ Bn, b
′ ∈ Bn′ give the same link. Note that

ab = ba, Pic 2.6. Now let us take b ∈ Bn. We can embed Bn into Bn+1 (just put a strand
from (n+ 1, 0, 0) to (n+ 1, 0, 0) that is below all other strands). Pick b ∈ Bn. We can view

b as an element of Bn+1 and form the product bT±1
n ∈ Bn+1. Then bT±1

n = b̄.
The following important result is due to Markov.

Theorem 2.4. Braids b1 ∈ Bn1 , b2 ∈ Bn2 have the same closure if and only if b1 can be
obtained from b2 by a sequence of Markov moves

(M1) ab ↔ ba, for a, b in same Bn.
(M2) b ↔ bT±1

n , for b ∈ Bn ↪→ Bn+1.

By a Markov trace, we mean a collection of maps φn : Bn → C (or some other target)
that do not change under the Markov moves. By Theorem 2.4, this is the same thing as an
oriented link invariant. The reason why we call it a trace is that φn(ab) = φn(ba) is satisfied
as soon as φn(b) = tr(Φn(b)) for some representation Φn of Bn.

2.3. Markov trace from L(q). Let V be the U -module L(q), where we write U := Uq(sl2).
We have a homomorphism Bn → Z called the degree (and denoted by deg). It is defined on
the generators deg(Ti) = 1 (and extends to Bn because all relations preserve the degrees).
Now recall from the previous lecture that Bn acts on V ⊗n by U -linear automorphisms: Ti

maps to τi,i+1 = id⊗(i−1) ⊗(RV⊗V ◦ σ) ⊗ id⊗n−i−1. Denote this representation by Φ′
n. The

action of Bn commutes with the action of K that is given by an iterated ∆ of K, i.e., by
K⊗n. The trace of Φ′

n “almost” give a Markov trace but not quite.

Theorem 2.5. The maps φn given by φn(b) = q2 deg(b) tr(K⊗nΦ′
n(b)) form a Markov trace.

Moreover, φn(b) = (q + q−1)P (b).

The proof of this theorem (in a more general setting, where we replace Uq(sl2) by Uq(sln)
is a part of the homework).

Example 2.6. Let us compute φn(b) for b = 1 ∈ Bn. We get φn(b) = q0 tr(K⊗n) = tr(K)n =
(q + q−1)n.

Now let us compute φ2(T
2
1 ). We have Φ′

2(T
2
1 ) = 1 + (q−1 − q)Φ2(T1). So φ2(T

2
1 ) =

q4 tr(K⊗2)+q4(q−1−q) tr(K⊗2T1). But we know that φn form the Markov trace, so φ2(T1) =
q2 tr(K⊗2T1) = φ1(1) = (q + q−1). So φ2(T

2
1 ) = q4(q + q−1)2 + q2(q−1 − q)(q + q−1) =

(q + q−1)(q5 + q). Note that the closure of T 2
1 is a Hopf link.
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The theorem above proves the existence of the Jones polynomial but is not very useful
for computations. In the next section we will consider another construction of the Jones
polynomial, which also proves the existence and is better for computations.

3. Tangles and representations of quantum groups

3.1. Tangles. Tangles generalize both braids and links. A tangle is the following configu-
ration: it consists of oriented links in R2 × [0, 1] and oriented strands that connect some n
fixed points on R2 × {0} and m fixed points on R2 × {1} (we can connect two points on
R2 × {0} or two points on R2 × {1} with an oriented arc), points are connected one-to-one,
in particular, n+m has to be even. We consider tangles up to isotopy that fixes the n+m
points. We get the set T (n,m) of isotopy classes. Note that T (0, 0) consists precisely of the
oriented links.

By a signed set we mean a set together with a map to {±}. A tangle gives structures of
signed sets on {1, . . . , n} and {1, . . . ,m}: sinks on R2×{0} and sources on R2×{1} are sent
to a +, all other points are sent to a −. So, for two signed sets, M,N with |M | = m, |N = n|,
we can define the subset T (N,M) ⊂ T (n,m) corresponding to given signed sets.

We can still represent tangles by tangle diagrams, see Picture 3.1. Two tangles T1, T2 are
isotopic if and only if the diagram of T2 is obtained from that of T1 by a sequence of diagram
isotopies and the Reidemeister moves (R1),(R2),(R3).

We can compose tangles getting a partial composition map T (K,N)×T (N,M) → T (K,M)
similarly to the braids. Generating tangles are the crossings X+, X− ∈ T (2, 2), Picture 3.2,
and also caps and cups in T (2, 0) and T (0, 2) (usually tangles are drawn vertically, hence
the names), each with 2 possible orientations. Note that all other crossings are obtained as
compositions of X± with cups and caps, see Picture 3.3 (we can rotate the crossing using
cups and caps). Now the argument to show that X±, cups and caps are generators is the
same as for the braids.

We also have the tensor product T (n1,m1)× T (n2,m2) → T (n1 + n2,m1 +m2), by defi-
nition, the diagram of T1 ⊗ T2 is obtained by putting the diagram of T2 above the diagram
of T1, see Picture 3.4.

3.2. Functor. Let V = L(q). We assign V, V ∗ to the n + m points: V goes to the point
labeled by a + and V ∗ to a point labeled by a −. To a signed set M we assign the module
to be denoted by V ⊗M , which is the tensor product of modules assigned to points in M .

Our goal is, for T ∈ T (N,M), construct a U -linear homomorphism φT : V ⊗M → V ⊗N in
such a way that φT1◦T2 = φT1 ◦ φT2 and φT1⊗T2 = φT1 ⊗ φT2 .

This is done as follows: we need to define φT for generating tangles, extend it to arbitrary
tangles so that diagrams corresponding to the same tangle give the same homomorphisms.
In other words, we need to check that the homomorphism is preserved under a diagram
isotopy and respects the three Reidemeister moves. We are not going to discuss this check,
it requires a much more careful examination of how tangle isotopies work.

The generating tangles are the cups in T (0, 2), caps in T (2, 0) and the crossings in T (2, 2)
(lines should clearly give the identity isomorphism). The homomorphism corresponding to
X+ (and to its rotations) is q2τ?⊗?, while the homomorphism corresponding to X− is q−2τ−1

?⊗?.
The homomorphisms corresponding to caps and cups are between V ⊗ V ∗ (or V ∗ ⊗ V ) and
C. This is discussed in the next section.

Let us note that once T 7→ φT is constructed, it gives a link invariant. The invariant
produced from V = L(q) is the Jones polynomial. An advantage of the present construction
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is that it is much easier to compute the Jones polynomial from a link diagram (we just
need to decompose the diagram into the composition of the generating tangles and write the
corresponding composition of homomorphisms, see Picture 3.5).

3.3. Duality. Let V be a finite dimensional representation of U . We are going to define
natural homomorphisms between V ⊗V ∗ (and V ∗⊗V ) and the trivial module C. Recall that
U acts on V ∗ via ⟨uα, v⟩ = ⟨α, S(u)v⟩. Recall that S is given by S(E) = −K−1E, S(F ) =
−FK, S(K) = K−1.

First of all, note that the natural isomorphism V ∼= V ∗∗ is not U -linear. Indeed, U acts
on V ∗∗ = V via u · v = S2(u)v, where in the right hand side we have the usual action
on V . We get S2(u) = K−1uK (it is enough to check this on the generators, where this
straightforward). So v 7→ K−1v is a U -module isomorphism V → V ∗∗.

The natural map p : V ∗ ⊗ V → C, α ⊗ v 7→ α(v) is U -linear. For example, let us check
that p intertwines E, i.e., p ◦ E = 0. We have

E(α⊗ v) = ∆(E)(α⊗ v) = (E ⊗ 1 +K ⊗ E)(α⊗ v) = Eα⊗ v +Kα⊗ Ev,

p(E(α⊗ v)) = ⟨Eα, v⟩+ ⟨Kα,Ev⟩ = ⟨α,−K−1Ev⟩+ ⟨α,K−1Ev⟩ = 0.

The map V ∗∗ ⊗ V ∗ → C is U -linear hence V ⊗ V ∗ → C, v ⊗ α 7→ ⟨K−1v, α⟩ is U -linear.
Now let us get U -linear isomorphisms C → V ⊗V ∗, V ∗⊗V . The former is the naive map:

we can identify V ⊗ V ∗ ∼= End(V ) via (v ⊗ α).v′ = ⟨α, v′⟩v and the image of 1 in V ⊗ V ∗

is the identity map. This map is U -linear because the map V ⊗ V ∗ ⊗ V → V is U -linear.
Similarly, we define C → V ∗⊗V in such a way that the map V ∗⊗V ⊗V ∗ → V ∗ is U -linear:
1 ∈ C goes to K−1

V ∗ under the natural identification V ∗ ⊗ V ∼= End(V ∗).
We will use the notations evV for V ∗⊗V → C, ev∗V for V ⊗V ∗ → C, coevV for C → V ∗⊗V

and coev∗V : C → V ⊗ V ∗.

Example 3.1. Let us compute the four maps above for V = L(q). Let v1, v2 be the
natural basis of V and α1, α2 be the dual basis in V ∗. Then evV (

∑2
i,j=1 aijαi ⊗ vj) =

a11+a22, ev
∗
V (
∑2

i,j=1 bijvi⊗αj) = q−1b11+qb22. Further, coev
∗
V (1) = v1⊗α1+v2⊗α2, coevV =

qα1 ⊗ v1 + q−1α2 ⊗ v2. Note that evV ◦ coevV = ev∗V ◦ coev∗V = q + q−1.

These maps are assigned to cups and caps as shown in Picture 3.6.


