
LECTURE 15: REPRESENTATIONS OF Uq(g) AT ROOTS OF 1

IVAN LOSEV

Introduction

In Lecture 13 we have studied the representation theory of Uq(g) when q is not a root of
1. We have seen that the representation theory basically looks like the representation theory
of g (over C).

In this lecture we are going to study a more complicated case: when q is a root of 1 (we
still need to exclude some small roots of 1 to make the algebra Uq(g) defined). When we deal
with the usual definition of Uq(g) we see features of the algebra U(gF), where F is a field of
positive characteristic. In particular, Uq(g) has an analog of the p-center and is finite over
its center.

Or we can modify our definition of Uq(g) including divided powers, this is the case we are
going to mostly care about. The corresponding algebra has many features of the semisimple
algebraic groups over field of positive characteristic (such as the Frobenius homomorphism).
In fact, it is the connection with quantum groups that allowed to compute the characters of
irreducible representations of GF when charF ≫ 0.

For the most part of this lecture we consider the case of Uq(sl2) that can be treated by
hand. In the second part we consider a far more complicated case of Uq(sln). We mention
the connection between the representation theory of Uq(sln) and that of the affine Lie algebra

ŝln discovered by Kazhdan-Lusztig. This is the main tool to study the representation theory
of Uq(sln) (and of other Uq(g), there we need the affine Lie algebra ĝ).

1. Case of Uq(sl2)

Recall that Uq(sl2) is defined by generators E,K±1, F and relations

KEK−1 = q2E,KFK−1 = q−2F,EF − FE =
K −K−1

q − q−1

These relations give us some freedom of choosing the base ring. In this lecture, q will be
viewed as an element of R := C[q±1][(q − q−1)−1], it obviously makes sense to consider
Uq(sl2) as an R-algebra. This algebra will be denoted by UR. For ϵ ∈ C \ {0,±1}, we set
Uϵ := Cϵ ⊗R UR. By K we denote the fraction field C(q) of R and we set UK = K⊗R UR.

For the remainder of this section, we write g for sl2 and G for SL2 (over C by default).

1.1. Usual Uϵ(sl2). Let ϵ denote a primitive root of 1 of order d. We set d0 = d/2 if d is
even and d0 = d if d is odd.

Proposition 1.1. The elements Ed0 , Kd0 , F d0 ∈ Uϵ are central.

The proof is a part of the homework.
Let Zd0 denote the subalgebra of Uϵ generated by F d0 , Kd0 , Ed0 . It is an analog of the

p-center of U(sl2(F)).
1
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Proposition 1.2. Elements F kd0Kℓd0Emd0, where k,m ∈ Z>0, ℓ ∈ Z, form a basis in Zd0.
The algebra Uϵ is a free Zd0-module with basis F k1Kℓ1Em1, where k1, ℓ1,m1 ∈ {0, . . . , d0−1}.

The proof of the first claim is based on the formula for ErF s that will be provided below.
All other claims are easy.

The representation theory of Uϵ is very similar to that of U(gF), where g = sl2, but we are
not going to provide details here. One thing that we will need is that the modules L0(κϵ

s)
over Uϵ are irreducible when s ∈ {0, . . . , d0−1} (and the central elements F d0 , Kd0 −κd0 , Ed0

act by 0).

1.2. Divided power algebra. Now we are going to define a different algebra to be a
denoted by U̇R and its specializations. The algebra U̇R is defined as the subalgebra inside
UK generated K±1 by the divided powers E(k) := Ek/[k]q!, F

(k) := F k/[k]q!. By the very

definition, K ⊗R U̇R := UK. We set U̇ϵ := Cϵ ⊗R U̇R. Note that if ϵ is not a root of 1,
the algebra U̇ϵ coincides with Uϵ, while for a root of 1 we get something different. This
is because still have elements E(k), F (k) in U̇ but they are no longer polynomials in E,F .

Since [d0]ϵ! =
ϵd0−ϵ−d0

ϵ−ϵ−1 = 0, we get Ed0 = F d0 = 0 in U̇ϵ. Below we will only (for simplicity)
consider the case when d is odd so that d = d0. Note that [k]ϵ = 0 if and only if k is divisible
by d.

Remark 1.3. This construction is strongly motivated by the representation theory of al-
gebraic groups in characteristic p. There one defines the hyperalgebra U̇Z(g) ⊂ U(gQ) and

its specialization U̇F(g). The point is that the category of finite dimensional U̇F(g)-modules
coincides with that of the rational representations of GF.

Lemma 1.4. The algebra U̇ϵ is generated by E,K±1, F, E(d), F (d).

Proof. Note that

[kd]q =
qkd − q−kd

q − q−1
=

qkd − q−kd

qd − q−d

qd − q−d

q − q−1
= [k]qd [d]q.

So

(1.1) ([kd]q/[d]q) |q=ϵ = k.

It follows that any E(k) is a polynomial in E and E(d) and the similar statement holds for
F (k). �

Our next goal is to establish the triangular decompositions

U̇R = U̇−
R ⊗R U̇0

R ⊗ U̇+
R , U̇ϵ = U̇−

ϵ ⊗ U̇0
ϵ ⊗ U̇+

ϵ

(as R-modules/vector spaces). In order to do this we will need some identities in UK. First,
some notation. For a ∈ Z, we set

[K; a] :=
Kqa −K−1q−a

q − q−1

so that [E,F ] = [K; 0]. Consider the “binomial coefficient”(
K; a

i

)
=

(
i−1∏
j=0

[K; a− j]

)
/[i]q!.
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Lemma 1.5. We have the following equalities in UK:

E(r)F (s) =

min(r,s)∑
i=0

F (s−i)

(
K; 2i− r − s

i

)
E(r−i),(1.2) (

K; a+ 1

i

)
= qi

(
K; a

i

)
+ qi−a−1K−1

(
K; a

i− 1

)
,(1.3) (

K; a

i

)
E(k) = E(k)

(
K; a+ 2k

i

)
,(1.4) (

K; a

i

)
F (k) = F (k)

(
K; a− 2k

i

)
.(1.5)

Proof. (1.2) is proved by the double induction. (1.3), a q-analog of a classical binomial
identity, is obtained by a direct calculation. (1.4),(1.5) are straightforward corollaries of
KEK−1 = q2E,KFK−1 = q−2F , respectively. �

(1.2) and (1.3) imply that all
(
K;a
i

)
∈ U̇R. We will denote the specialization of

(
K;a
i

)
to U̇ϵ

by the same symbol.
Now let us proceed to the triangular decompositions. Set U̇ ?

R := U̇R ∩ U ?
K, where ? =

+, 0,−, and U+
K , U

0
K, U

−
K are the subalgebras of UK generated by E,K, F , respectively so

that we have UK = U−
K ⊗K U0

K ⊗ U+
K . We write U̇ ?

ϵ = Cϵ ⊗R U̇ ?
R.

Proposition 1.6. We have the following triangular decompositions.

(1) U̇R = U̇−
R ⊗R U̇0

R⊗R U̇+
R . The algebra U̇±

R is a free R-module with basis E(k) (or F (k)),

where k ∈ Z>0. The R-module U̇0
R is spanned by the elements of the form Kℓ

(
K;0
i

)
,

where ℓ, i ∈ Z.
(2) U̇ϵ = U̇−

ϵ ⊗ U̇0
ϵ ⊗ U̇+

ϵ . The space U̇±
ϵ has basis Ek(E(d))ℓ (or F k(F (d))ℓ) with k ∈

{0, 1, . . . , ℓ−1} or ℓ ∈ Z>0. The space U̇
0
ϵ has basis Km

(
K;0
d

)ℓ
, where 0 6 d 6 2m−1.

Proof. Let us prove (1). The algebra U̇R is spanned by KsE(ℓ1)F (m1) . . . E(ℓn)F (mn). Then
we use relations of Lemma 1.5 to show that U̇−

R ⊗R U̇0
R ⊗R U̇+

R � UR. This map is an
isomorphism after base change to K. All factors are torsion free over R and so is their
product. We deduce that U̇−

R ⊗R U̇0
R ⊗R U̇+

R = UR. The claims about bases/spanning sets
are left as exercises.

Let us prove (2). The triangular decomposition is a straightforward corollary of the claim
for U̇R. The claim about the bases in U̇±

ϵ follows from the corresponding claims for U̇±
R and

(1.1). The claim for U̇0
ϵ is more subtle and is left as an exercise (note for example that we

have
∏d−1

i=0 [K;−i] = 0 in U̇0
ϵ hence we can only use Km,m = 0, . . . , 2d−1, in generators). �

Now let us present U̇ϵ by generators and relations.
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Proposition 1.7. The algebra U̇ϵ is generated by E,F,K±1, E(d), F (d),
(
K;0
d

)
with the follow-

ing relations:

EE(d) = E(d)E, FF (d) = F (d)F, K

(
K; 0

d

)
=

(
K; 0

d

)
K,(1.6)

KEK−1 = ϵ2E, KFK−1 = ϵ−2F, KE(d)K−1 = E(d), KF (d)K−1 = F (d),(1.7)

E

(
K; 0

d

)
=

(
K; 2

d

)
E,(1.8) (

K; 0

d

)
F = F

(
K; 2

d

)
,(1.9) (

K; 0

d

)
E(d) = E(d)

(
K; 0

d

)
+ 2E(d),

(
K; 0

d

)
F (d) = F (d)

(
K; 0

d

)
− 2F (d).(1.10)

[E,F ] = [K; 0], [E,F (d)] = F (d−1)[K; 1− d], [E(d), F ] = [K; 1− d]E(d−1),(1.11)

[E(d), F (d)] =

(
K; 0

d

)
+

d−1∑
i=1

F (d−i)

(
K; 2i− 2d

i

)
E(d−i).(1.12)

In (1.8,1.9) one recovers
(
K;2
d

)
from

(
K;0
d

)
and polynomials in K using (1.3). In the sum-

mation in the right hand side of (1.12) and in the right hand side of (1.11) we have an
expression of F,K,E.

Proof. Let Ũϵ be the algebra generated by the generators and relations above. All the
relations above hold in U̇ϵ and so we get Ũϵ � U̇ϵ. Using the relations for Ũϵ we can see that

elements of the form F k1(F (d))k2Kℓ1
(
K;0
d

)ℓ2
Em1(E(d))m2 with k1,m1 ∈ {0, . . . , d − 1}, ℓ1 ∈

{0, . . . , 2d− 1}, k2, ℓ2,m2 ∈ Z>0, span Ũϵ. Hence Ũϵ
∼−→ U̇ϵ. �

One can check that the subalgebra U̇R ⊂ UK is a Hopf subalgebra. It follows that U̇ϵ is a
Hopf algebra.

Now let us investigate the Hopf algebra structures on U̇R, U̇ϵ.

Lemma 1.8. U̇R ⊂ UK is a Hopf subalgebra. So U̇ϵ becomes a Hopf algebra.

Proof. This boils down to show that ∆(U̇R) ⊂ U̇R ⊗R U̇R and S(U̇R) ⊂ U̇R. We will do the
first check. It will follow if we check that ∆(E(k)),∆(F (k)) ⊂ U̇R ⊗R U̇R. We have

∆(E(k)) = ([k]q!)
−1(E ⊗ 1 +K ⊗ E)k =

k∑
i=0

qi(k−i)E(k−i)Ki ⊗ E(i),

∆(F (k)) = ([k]q!)
−1

k∑
i=0

qi(k−i)F (k−i) ⊗ F (i)K−i.

Both right hand sides are in U̇R ⊗R U̇R. �
1.3. Small quantum group and quantum Frobenius. By the small quantum group uϵ

we mean the subalgebra of U̇ϵ generated by E,K±1, F . Another way to define it is as the
image of the natural homomorphism Uϵ → U̇ϵ. Note that uϵ is a Hopf quotient of Uϵ and a
Hopf subalgebra of U̇ϵ.

Proposition 1.9. The algebra uϵ is the quotient of Uϵ by (Ed, F d, K2d − 1). It has basis
F kKℓEm, where k,m ∈ {0, . . . , d− 1} and ℓ ∈ {0, . . . , 2d− 1}.



LECTURE 15: REPRESENTATIONS OF Uq(g) AT ROOTS OF 1 5

Now we want to describe the the quotient of U̇ϵ by (E,F,K − 1).

Proposition 1.10. We have U̇ϵ/(E,F,K − 1) = U(sl2) with E(d) 7→ e, F (d) 7→ f and(
K;0
d

)
7→ h. This is an isomorphism of Hopf algebras.

Proof. By Proposition 1.7, U̇ϵ/(E,F,K−1) is generated by the elements E(d), F (d),
(
K;0
d

)
that

satisfy the defining relations of U(sl2). This gives the required isomorphism. It preserves
the Hopf algebra structure because it intertwines ∆(E(d)) with ∆(e) and ∆(F (d)) with ∆(f).
The latter is a consequence of the computation in the proof of Lemma 1.8. �

The epimorphism U̇ϵ � U(sl2) is called the quantum Frobenius epimorphism and is denoted
by Fr.

1.4. Classification of the irreducibles and characters. The classification of finite di-
mensional irreducible U̇ϵ-modules works similarly to to that of SL2(F)). Besides, we have an
analog of the Steinberg decomposition.

Theorem 1.11. There is a bijection between Irrf.d.(U̇ϵ) and the set {±1}×Z>0. An element
(κ, n) in the latter set goes to the unique finite dimensional irreducible module L(κ, n) that
has a vector vκ,n with (here n = dm+ r, where 0 6 r < d,)

(1.13) Kvκ,n = κϵnvκ,n,

(
K; 0

d

)
vκ,n = mvκ,n, E(i)vκ,n = 0, i > 0.

then L(κ, n) = L(κ, r)⊗ Fr∗L(m), where E(d), F (d) act by 0 on L(κ, r) and L(m) stands for
the irreducible sl2(C)-module with highest weight m.

To prove this theorem is a part of the homework.
Moreover, we note that we still have the universal R-matrix for U̇ϵ (but not for Uϵ!).

Indeed, Θ lies in a completion of U̇R (and becomes a finite sum in U̇ϵ). Moreover, one can
make sense for Ψ for U̇ϵ. The resulting R-matrix enjoys the same properties as for q ̸= •

√
1.

2. Case of Uq(sln)

In this section we deal with g = sln. The case of a more general semisimple Lie algebra is
treated similarly but we want to keep the exposition simpler.

We can define the subalgebra U̇R(sln) ⊂ UK(sln) similarly to the above. We then consider
the specialization U̇ϵ(sln), where ϵ is a primitive dth root of 1 (we still assume that d is odd).
This specialization admits a triangular decomposition U̇ϵ(sln) = U̇−

ϵ ⊗ U̇0
ϵ ⊗ U̇+

ϵ , where U̇−
ϵ

is generated by the elements F
(k)
i , U̇0

ϵ is generated by the elements K±1
i and

({Ki;a
j}

)
, U̇+

ϵ is

generated by the elements E
(k)
i .

The finite dimensional irreducible representations are still parameterized by {±1}n−1×P+,
where we write P+ for the monoid of dominant weights. We will be interested in the
representations parameterized by P+. Every such module V admits a weight decomposition
V =

⊕
µ Vµ, where Vµ is determined as follows. Let µ = (µ1, . . . , µn). Then Vµ consists of

all elements v ∈ V such that Kiv = ϵriv and
(
K;0
d

)
v = dmiv. Here we write µi = dmi+ ri for

the division with remainder. For λ ∈ P+, we write L(λ) for the corresponding irreducible
representation.

The module L(λ) can be realized as the unique irreducible quotient of the Weyl module
W (λ). The latter is defined by a single vector vλ and the following relations: v ∈ W (λ)λ,
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E
(k)
i vλ = 0 for all k > 0 and F

(k)
i vλ = 0 for k > µi. Note that those are precisely the relations

defining the irreducible module with highest weight λ over U(sln).
The module W (λ) enjoys the same universal property as the Weyl module for the repre-

sentations of SLn(F):

HomU̇ϵ
(W (λ), V ) = {v ∈ Vλ|E(k)

i v = 0,∀i = 1, . . . , n, ∀k > 0}.
As usual, an important problem is to compute the characters of the modules L(λ). This

boils down to determining the multiplicities of L(µ)’s in W (λ)’s. The solution follows from
the work of Kazhdan and Lusztig, [KL] (for an arbitrary finite dimensional semisimple Lie
algebra g). They established an equivalence of U̇ϵ -modf.d. and a certain category of repre-

sentations of the affine Lie algebra ŝln (that was defined in Homework 5). The multiplicities
in the latter are given by values at 1 of suitable Kazhdan-Lusztig polynomials for the affine
symmetric group Ŝn.

2.1. Connection to representation theory of ŝln. As usual, an important problem is
to compute the characters of the modules L(λ). This boils down to determining the multi-
plicities of L(µ)’s in W (λ)’s. The solution follows from the work of Kazhdan and Lusztig,
[KL] (for an arbitrary finite dimensional semisimple Lie algebra g). They established an
equivalence of U̇ϵ -mod1

f.d. (the category of modules, where K acts with eigenvalues that are

powers of ϵ) and a certain category of representations of the affine Lie algebra ŝln (that was
defined in Homework 5). The multiplicities in the latter are given by values at 1 of suitable

Kazhdan-Lusztig polynomials for the affine symmetric group Ŝn.
We are going to finish by describing the Kazhdan-Lusztig category C on the side for g = ŝln.

Pick κ ̸∈ Q>0 such that exp(π
√
−1κ−1) = ϵ. By definition, C consists of the modules with

the following properties:

• m+ := tg[t] acts locally nilpotently.
• g ⊂ ĝ acts locally finitely (any vector lies in a finite dimensional g-submodule).
• c ∈ ĝ acts by the scalar κ−m.

Let us produce an example of a module in C, the Weyl module (a.k.a. a parabolic Verma
module) ∆(λ). Let V (λ) denote the irreducible g-module with highest weight λ. We turn
it into a g[t]-module by making tg[t] act by 0. We make c to act by κ − m. Then set
∆(λ) = U(ĝ)⊗U(g[t]⊕Cc) V (λ).

The following is the main result of [KL] (for an arbitrary semisimple Lie algebra g).

Theorem 2.1. There is a category equivalence between Uq(g) -mod1
f.d. and the category C

that maps W (λ) to ∆(λ).

The main idea of the proof is to recover the tensor product on the level of C. This is done
using a construction called conformal blocks that comes from Math Physics.
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