
LECTURE 17: DEFORMED PREPROJECTIVE ALGEBRAS

IVAN LOSEV

1. Introduction/recap

In the previous lecture we have stated the Kac theorem and introduced the deformed
preprojective algebras. In this lecture we will prove a weaker version of the theorem by
studying the representation theory of those algebras.

Theorem 1.1. Let Q be a quiver and v be a dimension vector. Then the following is true.

(1) If there is an indecomposable representation of dimension v, then v is a root.
(2) If v is a real root, then there is a unique (up to an isomorphism) indecomposable

representation of dimension v.
(3) If v is primitive (meaning that GCD(vi) = 1) and there is an indecomposable rep-

resentation of dimension v, then pv, the number of parameters for the isomorphism
classes of indecomposable representations, equals

1− (v, v)/2(= 1− dimGv + dimRep(Q, v)).

Remark 1.2. Suppose that there is i such that vj = 0 for all j ̸= i and there is no loop at
i. Then Rep(Q, v) = {0}. The zero representation is indecomposable if and only if vi = 1
(i.e., v corresponds to a simple root).

Also note that if there is an indecomposable representation of dimension v, then the
support of v is connected.

Now recall that a deformed preprojective algebra is defined by

Πλ(Q) = CQ/(
∑
a∈Q1

[a, a∗]−
∑
i∈Q0

λiϵi).

The set Rep(Πλ(Q), v) ⊂ Rep(Q, v) coincides with µ−1(
∑

i λi idVi
), where µ : Rep(Q, v) → gv

is the moment map, µi(xa, xa∗) =
∑

a,h(a)=i xaxa∗ −
∑

a,t(a)=i xa∗xa. Being a moment map
means that µ is Gv-equivariant and

(1.1) ⟨dxµ(v), ξ⟩ = ω(ξx, v).

Note that
∑

i trµi(xa, xa∗) = 0. By ḡv, we denote the subalgebra of gv consisting of all
elements (yi) with

∑
i tr(yi) = 0. So µ : Rep(Q̄, v) → ḡv.

2. Connection to indecomposable representations of Q

Let π : Rep(Πλ(Q), v) → Rep(Q, v) denote the projection, it sends (xa, xa∗)a∈Q1 to
(xa)a∈Q1 . Our goal is to describe the pre-image of (xa).
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2.1. Exact sequence. A key tool for this is the following lemma. We define a map c :
Rep(Qop, v) → gv by c(xa∗) := µ(xa, xa∗) and a map t : gv → End(xa)

∗ by ⟨t(yi), (zi)⟩ =∑
i tr(yizi). Recall that End(xa) denote the endomorphism algebra of the representation xa,

it consists of all Q0-tuples (zi) with zh(a)xa = xazt(a).

Lemma 2.1. The sequence

Rep(Qop, v)
c−→ gv

t−→ End(xa)
∗ → 0

is exact.

Proof. The map t is the composition of the identification gv ∼= g∗v and the projection g∗v �
End(xa)

∗, so t is surjective.
Let us prove that t ◦ c = 0. This is equivalent to

∑
i∈Q0

tr(µi(xa, xa∗), zi) = 0. But∑
i∈Q0

tr(µi(xa, xa∗), zi) =
∑
a∈Q1

(tr(xaxa∗zh(a))− tr(xa∗xazt(a))) =∑
a∈Q1

(tr(xa∗(zh(a)xa − xazt(a)))) = 0.

In order to check that ker t = im c, we will compare the dimensions. We have

ker c = {(xa∗)|d(xa),0µ((0, xa∗)) = 0} = [(1.1)] = {(xa∗)|⟨(xa∗), gv.(xa)⟩ = 0}.
The dimension of gv.(xa) is dim g−dimEnd(xa) and so dimker c = dimRep(Qop, v)−dim gv+
dimEnd(xa). We conclude that dim im c = dim gv − dimEnd(xa) = dimker t. The second
equality holds because t is surjective. �
2.2. Consequences. Now let us deduce some corollaries on π−1(xa).

Corollary 2.2. The following is true.

(1) We have π−1(xa) ̸= ∅ if and only if
∑

i∈Q0
λi tr(zi) = 0 for any (zi) ∈ End(xa).

(2) If π−1(xa) is non-empty, then it is an affine space of dimension dimRep(Q, v) −
dimGv.(xa).

(3) Suppose that v is generic with λ ·v = 0 meaning that the equality λ ·v′ = 0 with v′ 6 v
(component-wise) implies v = kv′ for some k ∈ Q (here we write λ · v =

∑
i∈Q0

λivi).

Then π−1(xa) ̸= ∅ if and only if the dimensions of all direct summands of (xa) are
proportional to v.

(4) In addition, suppose v is primitive. Then π−1(xa) ̸= ∅ if and only if (xa) is inde-
composable. Moreover, all representations of Πλ(Q) of dimension v are irreducible.

Proof. (1) is a direct corollary of Lemma 2.1. (2) follows from the proof because dim π−1(xa) =
dimker c = dimRep(Qop, v)− dim gv + dimEnd(xa) = dimRep(Q, v)− dimGv.(xa).

Let us prove (3). Let (x′a) be a direct summand of (xa) of dimension v′. Let (zi) ∈⊕
i End(Vi) denote the corresponding projection. Then it is an element of End(xa). So∑
i∈Q0

λi tr(zi) = λ · v′ = 0. Since λ is generic, we see that v′ is proportional to v.

Conversely, let (xa) =
⊕

j(x
j
a) be the decomposition into indecomposables. Assume that

the dimensions vi are proportional to v. Let us write an endomorphism (zi) of (xa) as a
matrix (zjk), with zjk ∈ HomQ((x

j
a), (x

k
a)). Note that since (xja) is indecomposable, the

endomorphism zjj acts on the corresponding representation space V j =
⊕

i V
j
i with a sin-

gle eigenvalue. It follows that the vector (tr(zjji ))i∈Q0 is proportional to vj. We see that∑
i∈Q0

λi tr(z
jj
i ) = 0 and so

∑
i∈Q0

λi tr(zi) = 0. (3) is fully proved.
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Now let us prove (4). The first claim is a direct corollary of (3). To prove the second
statement, let (x′a, x

′
a∗) be a nonzero sub of (xa, xa∗) ∈ Rep(Πλ(Q), v). Then π−1(x′a) ̸= 0

and hence, by (4), we need to have λ · v′ = 0. Since v is primitive, this is only possible if
v = v′. �

2.3. Application to Kac’s theorem. Let us compute dv under some additional assump-
tions.

Corollary 2.3. Assume that v is primitive and λ is generic with λ · v = 0. If there is an
indecomposable representation in Rep(Q, v) or Rep(Πλ(Q), v) ̸= ∅, then pv = 1− (v, v)/2.

Proof. Let Repind(Q, v) ⊂ Rep(Q, v) denote the subset of the indecomposable representa-
tions. Then Rep(Πλ(Q), v) admits a morphism π with image Repind(Q, v) whose fiber over
(xa) is an affine space of dimension dimRep(Q, v) − dimGv.(xa). By (4) of the previous
corollary all representations in Rep(Πλ(Q), v) are irreducible. By the Schur lemma, all their
endomorphisms are constant.

Let Ḡv denote the quotient of Gv by the one-dimensional subgroup of constant matrices.
The kernel of Gv � Ḡv acts on Rep(Q, v) trivially so we get an action of Ḡv on Rep(Q, v).
The Lie algebra of Ḡv is naturally identified with ḡv and µ : Rep(Q̄, v) → ḡv is the moment
map. Also note that the action of Ḡv on Rep(Πλ(Q), v) = µ−1(λ) is free. From here
and (1.1) one deduces that µ is a submersion at all points of Rep(Πλ(Q), v) and hence
dimRep(Πλ(Q), v) = dimRep(Q, v)− dim gv.

Let us cover Repind(Q, v) with locally closed Gv-stable subvarieties with constant dimen-
sions of orbits, Repind(Q, v) =

⊔
iXi, let di denote the dimension of a Gv-orbit in Xi. Let Yi

denote the preimage of Xi in µ−1(λ), it is an affine bundle with rank dimRep(Q, v) − di
over Xi. So we see that 2 dimRep(Q, v) − dimGv = maxi(dimYi) = maxi(dimXi +
dimRep(Q, v) − di) = dimRep(Q, v) + maxi(p(Xi)). It follows that pv = maxi(p(Xi)) =
dimRep(Q, v)− dimGv + 1 = 1− (v, v)/2. �

3. Reflection functors

We will view λ = (λj)j∈Q0 as an element of h and a dimension vector v as an element of
h∗ (the pairing is by ⟨λ, v⟩ = λ · v). Recall that W (Q) acts on h∗ as follows: (siv)j = vj for
j ̸= i and (siv)i =

∑
j nijvj −vi, where nij is the number of edges between i and j. So W (Q)

acts on h as follows: (siλ)i = −λi, (siλ)j = λj + nijλi.
The main result of this section is as follows.

Theorem 3.1. Pick i ∈ Q0 such that there are no loops at i. Suppose λi ̸= 0. Then is
an equivalence Πλ(Q) -mod

∼−→ Πsiλ(Q) -mod that maps a representation of dimension v to a
representation of dimension siv.

Before proving this theorem we will explain how it applies to the Kac theorem.

3.1. Application to Kac’s theorem.

Corollary 3.2. Suppose there is an indecomposable representation of dimension vector v.
Then v is a root.

Proof. We can assume that for all v′ 6 v, v′ ̸= v (componentwise), the claim is true. We can
also assume (v, v) > 0, otherwise we are done by Remark 1.2. If (v, ϵi) 6 0 for all i, then
(v, v) =

∑
i vi(v, ϵi) 6 0. Note that if there is a loop at i, then (v, ϵi) 6 0. So it’s enough
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to consider the case when there is i such that there is no loop at i and (v, ϵi) > 0 so that
siv = v − (v, ϵi)ϵi < v.

Let us prove that if Rep(Πλ(Q), v) for a Zariski generic λ with λ · v = 0 contains an inde-
composable representation, then v is a real root. We prove it by induction. By Theorem 3.1,
Rep(Πsiλ(Q), siv) contains an indecomposable representation. This provides an inductive
step. The base is given by v = mϵi: there the representation is zero and so m = 1.

By (3) of Corollary 2.2, if Rep(Q, v) contains an indecomposable representation, then so
does Rep(Πλ(Q), v). This completes the proof. �

Corollary 3.3. Let v be a real root. Then there is a unique (up to isomorphism) indecom-
posable representation of Q with dimension vector v.

Proof. Let λ be generic with λ · v = 0. Let us check that there is a unique (up to an
isomorphism) representation of Πλ(Q) of dimension vector v. If v = ϵi, then there is only
the zero representation and so we are done. Theorem 3.1 gives the induction step.

Note that, as any real root, v is indecomposable. Now the claim of this corollary follows
from (4) of Corollary 2.2. �

3.2. Construction of equivalence. Now let us construct the required equivalence. Pick
a representation (xa, xa∗) with dimension vector v. Recall that Πλ(Q) does not depend on
the orientation of Q up to an isomorphism. So we may assume that i is a sink in Q. Let
Wi :=

⊕
a,t(a)=i Vh(a). We can write (xa, xa∗) as (A,B, x), where A :=

⊕
a,t(a)=i : Vi →

Wi, B :=
⊕

a,t(a)=i xa∗ : Wi → Vi and x includes all xb, xb∗ with t(b) ̸= i. Multiplying the

relation of Πλ(Q) by ϵi, we see that BA = −λi idVi
. Since λi ̸= 0, we see that A is injective,

B is surjective. Also, we see that Wi = imA ⊕ kerB. Identifying Vi with imA, we can
assume that A is the inclusion Vi ↪→ W , and B = −λiπ, where π is the projection along
kerB.

Now let us proceed to defining a representation of Πsiλ(Q) with dimension vector siv. The
space V ′ :=

⊕
V ′
i is determined as follows: V ′

j := Vj if j ̸= i, and V ′
i := kerB. In particular,

v′ = siv. The representation is given by (A′, B′, x), where A′ is the inclusion V ′
i ↪→ Wi and

B′ is λiπ
′, where π′ : Wi � V ′

i is the projection along imA. Note that we have

(3.1) A′B′ − AB = λi idWi
.

Now let us check that the resulting representation (A′, B′, x) factors through Πsiλ(Q). For
a ∈ Q1 with t(a) = i, let ρa, ιa denote the projection Wi =

⊕
a,t(a)=i Vh(a) � Vh(a) and the

inclusion Vh(a) ↪→ Wi corresponding to this arrow. So we have xa = ρa ◦A, xa∗ = B ◦ ιa, x′a =
ρa ◦ A′, x′a∗ = B′ ◦ ιa. We have −

∑
t(a)=i x

′
a∗x

′
a = −B′A′ = −λi idV ′

i
. So what we need to

check is that for j ̸= i, we have∑
a,h(a)=j

x′ax
′
a∗ −

∑
a,t(a)=j

x′a∗x
′
a = (siλ)j idVj

= (λj + nijλi) idVi
.

This will follow if we check that∑
a,h(a)=j

(x′ax
′
a∗ − xaxa∗)−

∑
a,t(a)=j

(x′a∗x
′
a − xa∗xa) = nijλi idVj

.
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If t(a) ̸= i, then xa = x′a, xa∗ = x′a∗ . So the left hand side is∑
t(a)=i,h(a)=j

(x′ax
′
a∗ − xaxa∗) =

∑
t(a)=i,h(a)=j

ρa ◦ (A′B′ − AB) ◦ ιa =

= [(3.1)] =
∑

t(a)=i,h(a)=j

ρa ◦ (λi idWi
) ◦ ιa = nijλi idVj

,

as required. So we indeed get a a representation of Πsiλ(Q).
Our construction is functorial. Indeed, let (yi) : (Vi, xa, xa∗) → (V̄i, x̄a, x̄a∗) be a homo-

morphism of representations. This induces a homomorphism y : Wi → W̄i that intertwines
A,B with Ā, B̄. In particular, y restricts to kerB → kerB. So it induces a homomorphism
(y′i) : (V ′

i , x
′
a, x

′
a∗) → (V̄ ′

i , x̄
′
a, x̄

′
a∗). We indeed get a functor Πλ(Q) -mod → Πsiλ(Q) -mod

that behaves as si on the dimension vectors.
We also have a similarly defined functor ψ : Πsiλ(Q) -mod → Πλ(Q) -mod. It sends a

representation (A′, B′, x) back to (A,B, x). It is easy to see that ψ ◦ φ is isomorphic to the
identity functor of Πλ(Q) -mod. Similarly, φ ◦ ψ is isomorphic to the identity functor. This
shows that φ is an equivalence (with quasi-inverse ψ).

4. Further results and applications

4.1. Irreducible representations. A basic question about the representation theory of
Πλ(Q) is to describe its irreducible representations. Let us state the corresponding result of
Crawley-Boevey, we are not going to provide a proof.

For v ∈ ZQ0

>0, set p(v) = 1 − 1
2
(v, v). Define the set Σλ of all positive roots such that

λ · v = 0 p(v) >
∑k

i=1 p(vi) for all proper decompositions of v into the sum
∑k

i=1 vi, where
all vi ∈ (Z>0)

Q0 \ {0} such that λ · vi = 0. It is not so easy to describe Σλ, but this is a
combinatorial object.

Theorem 4.1. The algebra Πλ(Q) has an irreducible representation of dimension v if and
only if v ∈ Σλ. Moreover, Rep(Πλ(Q), v) ⊂ Rep(CQ, v) is an irreducible subvariety of dimen-
sion dimRep(Q, v) + p(v) and a Zariski generic point in Rep(Πλ(Q), v) gives an irreducible
representation.

4.2. Application to additive Deligne-Simpson problem. The additive Deligne-Simpson
problem (we’ll abbreviate this as DS problem) asks about the conditions on the conjugacy
classes C1, . . . , Ck in Matn(C) such that there are matrices Yi ∈ Matn(C) satisfying the
following two conditions:

(1)
∑k

i=1 Yi = 0,
(2) and there are no proper subspaces in Cn stable under all Yi.

From C1, . . . , Ck, Crawley-Boevey have constructed a quiver Q, a dimension vector v, and
λ ∈ CQ0 such that there is a bijection between

(a) solutions (Y1, . . . , Yk) of the DS problem (up to GLn(C)-conjugacy),
(b) irreducible dimension v representations of Πλ(Q) (up to an isomorphism).

Then the solution of the DS problem follows from Theorem 4.1 (one needs to use some
complicated combinatorics to get the answer explicitly).


