LECTURE 2: REPRESENTATIONS OF SYMMETRIC GROUPS, II

IVAN LOSEV

1. INTRODUCTION

Recall that last time we have introduced the set of weights Wt(n) C C™ and an equivalence
relation ~ on Wt(n). Our goal is to describe this set and this equivalence relation — the
equivalence classes are in a natural bijection with Irr(S,,). The first step here is as follows.
Pick a path P = V! — V2 — ... — V" in the branching graph and an integer k with
1 < k < n. We fix all vertices but V¥ and vary V*. The questions that we are going
to answer: how many paths do we get? What is the relation between their weights? Let
Path(P, k) be the resulting set of paths and Vg, := Span(vp/|P" € Path(P, k)). We will see
that V5, is an irreducible Z;_; (k+1)-submodule in V", where, recall, Z;_(k+1) stands for
the centralizer of CSy_; inside CSiy1. Next, we will construct the degenerate affine Hecke
algebra #(2) and its homomorphism to Z;_;(k + 1) so that V5, becomes an irreducible
H(2)-module. We will obtain a complete classification of the finite dimensional irreducible
H(2)-modules. This will ultimately allow us to describe the set Wt(n) and ~.

2. DEGENERATE AFFINE HECKE ALGEBRAS

2.1. Comparing V3, to Homg,_, (V*~!, V*1). Recall that the space Homg, , (V=1 V1)
has a basis pp, where P runs over Path(V* =1 V**1) The space Vi) has a basis indexed by

the same set, vp, pp,, where P = Vs . VLR =V & . = V" are the fixed
parts of the paths in Path(P, k).

Lemma 2.1. The map v : Homg,  (V*1 V) — V" given by ¢ — vp, o o(vp,) is a
Zy—1(k + 1)-equivariant embedding whose image coincides with V{5, .

Proof. By Remark 3.2 in Lecture 1 (concatenation of paths gives the composition of homo-
morphisms), vp pp, is proportional to ¢p,(¢p(vpr)). This shows that ¢ is an embedding
whose image coincides with Vp,. It remains to check that it is Z;_i(k + 1)-equivariant.
Note that ¢p, is CSky1-equivariant and hence is Z;_1(k + 1)-equivariant. By Remark 2.3 in
Lecture 1, we have [z - ¢](u) = z - p(u) for z € Z;_1(k + 1), € Homg, ,(V*!, VF1) and
u € VL This implies the Z;_,(k + 1)-equivariance of ). O

Recall the Jucys-Murphy elements L,, = .7 '(im). We have Ly, Ly, (k,k + 1) €
Zi—1(k+1).

Corollary 2.2. The subspace Vp,, is stable under Ly, Liy1, (k, k + 1) (the latter stands for
the transposition of k,k + 1) and has no proper stable subspaces.

Proof. Recall, Theorem 2.4 from Lecture 1, that Z,_i(k + 1) is generated by Zy_1(k —

1), L, L1, (k,k +1). By (1) of Corollary 2.5 of Lecture 1, Z;_1(k — 1) is in the center

of Zp_1(k +1). So elements of Z;_1(k — 1) act by scalars on any irreducible Z;_(k + 1)-

module U. So U is irreducible with respect to Ly, L1, (k, k+1). Since V§), is an irreducible

Zy—1(k + 1)-module, we are done. O
1
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2.2. Degenerate affine Hecke algebra 7 (2). Corollary 2.2 motivates us to find relations
between Ly, Lyi1, (k,k+1). Then we can form an associative algebra with three generators
corresponding to Ly, Ly1, (K, k + 1) and relations we have found, the space Vp, will be an
irreducible module over this algebra.

Lemma 2.3. We have the following relations
(2.1) LiLpi1 = LaLy, (kk+1)2=1, (kk+1)Ly= Lypa(k,k+1)—1.

Proof. The element L., commutes with CSy and hence with L, € CSy. This gives the first
relation. The second relation is obvious. The left hand side of the third relation is

N

-1 k—1 k—1

(B, ke +1)) (k) =Y (k. k+ 1)(ik) =Y (i, k k+1).

i=1 i=1

I
—

i

The right hand side is

;

These computations prove the third relation. 0

E

k+1
(z’,k+1)> (kk+1)—1=> (i,k+1)(kk+1)—1=
1 =1

-1 k—1

(G kk+1) + (b k+ 1) = 1= (i,kk+1).

1 =1

=

i

Define the degenerate affine Hecke algebra H(2) by generators X, X, T and relations that
mirror those found in Lemma 2.1.

X1 X = X0 X1, T?=1,TX, = XoT — 1.

There is a consequence of these relations: X;7 = T X5 — 1 (multiply the third relation by T
both from the left and from the right).

Our conclusion is that we have a unique homomorphism H(2) — Z;_1(k + 1) given on
generators by Xy — Ly, Xo +— Lg1, T — (k, k+1).

Corollary 2.4. The space V5, is an irreducible H(2)-module.

2.3. Classification of irreducible H(2)-modules. Let us classify the finite dimensional
irreducible H(2)-modules M.

Since X7, Xy commute, they have a common eigenvector m € M. Let Xim = am, Xom =
bm, where a,b € C.

Let us consider two cases:

1) T'm is proportional to m. Since T? = 1, we have two options:

1.1) Tm = m. Let us apply the third relation to m. The left hand side gives T X;m = am,
while the right hand side gives (X7 — 1)m = (b — 1)m, so here b = a + 1.

1.2) Tm = —m. Similarly to the previous case, we get b =a — 1.

2) m and T'm are linearly independent. Let us see how Xi, X3 act on T'm:

X1(Tm) = [XqiT =TXs — 1] = TXom — m = b(Tm) — m,
Xo(Tm) = [XoT = TX1 + 1] = TXam +m = a(Tm) + m.
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In particular, we see that Span(m,T'm) is stable under H(2). Since M is irreducible, we see
that m and T'm form a basis in M. In this basis, we have

01 a 0 b 0
02 re (0 D) (4 9 xe (00).

In particular, we see that, in case 2), two modules M, M’ that give the same pair of eigenval-
ues a, b are isomorphic. Note that if b = a & 1, then (2.2) give a reducible module. Indeed,
assume in the sake of being definite, that b = a+1. Then the line C(m+7m) is a submodule,
and our 2-dimensional module is a non-split extension of the 1-dimensional modules in 1.1)
and 1.2). In particular, the pair (a,b) of eigenvalues for X, Xy determines any irreducible
H(2)-module uniquely up to an isomorphism. Let us denote the corresponding module by
M(a,b).

Note that if a # b,b £ 1, then dim M (a,b) = 2 and the action of X;, Xy on M(a,b)
is diagonalizable, as X; has distinct eigenvalues and X5 commutes with X;. The pairs of
eigenvalues that appear are (a,b) and (b, a). It follows that M (a,b) = M(b,a). Moreover, if
M(a,b) = M(d',b') and (a,b) # (a/,V), then b #a+ 1, and o’ = b,V = a.

We arrive at the following classification result.

Proposition 2.5. The finite dimensional irreducible H(2)-modules are classified by pairs of
complex numbers, (a,b) — M (a,b), with M(a,b) = M(b,a) if b # a,a£1. The pair (a,b) is
a pair of simultaneous eigenvalues of X1, Xs in M(a,b). Moreover, the following is true.

(1) Ifb=a+ 1, then M(a,b) =C with T — 1, X; — a, Xs > b.

(2) If b=a—1, then M(a,b) = C with T — —1,X; — a, Xy — b.

(3) If b # a £ 1, then formulas (2.2) define an irreducible representation, and this is
M(a,b).

(4) The action of X1, Xs on M(a,b) is diagonalizable if and only if a # b.

2.4. Algebras H(d). One can define the algebra H(d) for all d > 1. Tt is generated by
generators Xq,..., Xy, T1,...,Ty_1 with relations:

XiX; = X;X;,
T2=1, TT;=TT, for i —j| > 1, TTiT =TT i,
XiT; =T;X;, fori—35#0,1, T,X;=X.T; — 1.

Note that in the second line we have precisely the relations for the transpositions (i,i+1) €
CSp,i = 1,...,n — 1. So the map (i,i + 1) — T; extends to an algebra homomorphism
CSyq — H(d). We also have an algebra homomorphism C[Xy, ..., Xy — H(d) given in an
obvious way.

Also note that we have a homomorphism H(d) — Z,_4(n) with X; — L, g4, T; —
(n—d+i,n—d+ 1+ 1). In particular, CS, is a quotient of H(n) by the two-sided ideal
generated by X, the element X; gets mapped to L;. The algebra H(d) first appeared in
connection with Yangians, [D], and then was used to study the representations of the usual
affine Hecke algebra, [L], that, in its turn, arises in the study of the representations of
GL(Q,).

A classification of the finite dimensional irreducible H(d)-modules and a computation of
their dimensions is known but isn’t easy, formulas will be in terms of so called Kazhdan-
Lusztig polynomials, see [BK].
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3. COMPLETION OF CLASSIFICATION

3.1. Consequences for weights. Here we are going to get some restrictions for wp/, where
P’ € Path(P, k). Let wp = (wy,...,w,) and wp = (w),...,w)). Recall (Lemma 3.3 of
Lecture 1) that w} is completely determined by V; and V/ ;. Since V; = V; when i # k, we
see that w, = w; if i # k, k+ 1.

Below we are going to use the following notation. We write s; for (i, + 1) € S,,. For
x = (x1,...,2,) € C", we write s;x for (x1,...,Tit1,Tiy ..., Tp).

Proposition 3.1. Let P be a path of length n. The following is true:
(a) If wg # wiy1 £ 1, then sywp is a weight equivalent to wp.

(b2) wy # wyyq for any k.

(b3) If wy, = wgo, then wii1 # wi + 1.

Proof. The proof is based on the observation that if P’ € Path(P, k), then Vg, = M (wj, w; ),
an isomorphism of H(2)-modules, where on the left hand side the structure of the module
is given by X7 +— Ly, Xo — Liy1, T — (k,k+1). So we can use Proposition 2.5.

In the situation of (a), the module M (wy, wi41) is two-dimensional. So Path(P, k) consists
of two elements, P and P' # P. Since M(wy,w ;) = Vi, = M(wy, wiy1), we use (3) of
Proposition 2.5 to see that wj = w41, w;,; = wy. This proves (a).

(bl) follows from L; = 0.

To prove (b2), we note that the action of X, Xy on Vp, = M (wy, wgy1) is diagonalizable.
So wy, # w41 by (4) of Proposition 2.5.

Let us prove (b3). Assume the converse, say, wy = Wgio = Wiy — 1. Then Cop =
M (wg, wy + 1) via Xy — Lg, Xo = Lyy1, T — (k,k+1). In particular, (k,k + 1)vp = vp.
Similarly, (k + 1,k + 2)vp = —vp. But (k+ L,k)(k+ 1L,k +2)(k,k+1) = (k+ Lk +
2)(k,k+ 1)(k + 1,k + 2) in S,. Applying the two sides to vp, we arrive at —vp = vp.
Contradiction. O

3.2. Combinatorial weights and combinatorial equivalence. Motivated by (a), define
an equivalence relation ~, (combinatorial equivalence) on C" by x ~ y if y is obtained from
x by a sequence of permutations of adjacent elements whose difference is not £1 (we call
such a permutation admissible). We define the subset CWt(n) C C" (combinatorial weights)
as the set of all x such that any y with y ~. x satisfies (b1)-(b3). The next lemma follows
from Proposition 2.5.

Lemma 3.2. Wt(n) is the union of some equivalence classes for ~. in CWt(n). Moreover,
for w,w" € Wt(n), we have w ~, w' = w ~ w'.

Note that CWt(n) C Z".

We are going to embed the set of equivalence classes CWt(n)/ ~. into P(n), the set of
partitions on n. This is done by reducing an element of CWt(n) to a “normal form”. We say
that an element € CWt(n) is normal if it has the form

(0,1,...,’I’Ll,—l,o,...,7’L2,—2,...,7’Lg,...),
whereny +1>2ny+2> ... 20.

Proposition 3.3. For any y € CWt(n), there exists a unique normal x € CWt(n) with
Y ~eX.
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Proof. Let n; be the maximal entry in y. We can find y' ~. y such that y;, = n; and
Yyr1s - - -+ Yy < n1, while there is no other z ~, y with z,...,2, < n; (the maximal entries
in " are as far to the left as possible). We claim that £ =n; +1 and y; =i — 1 for i < k.
Indeed, if y;,_; # n1 — 1, then we can switch y;,_; and yj, (here we use (b2)), etc.

Then we freeze the first n; + 1 entries in 3 (we no longer permute them) and pick the
maximal unfrozen entry n, in /. Again, consider y”, where the entries ny are as far to the
left as possible (with the first n; 4+ 1 entries frozen). Similarly to the previous paragraph, y”
starts with 0,1,...,n,a,a+ 1,...,no. If a < —1, then we can move a all the way to the
left and get a contradiction with (bl). If @ > —1, then we can move it the left until we get
a segment a,a + 1, a, which contradicts (b3). So a = —1.

Then we freeze the first (ny + 1) + (ng + 2) entries and repeat the argument. This shows
the existence of z.

Uniqueness follows from the observation that n; is the maximal element of vy, ..., y,, no
is maximal after removing 0,1, ..., nq, etc. 0

3.3. Young diagrams and tableaux, finally. Partitions of n that are often depicted as
Young diagrams, the following diagram corresponds to the partition 5 = 3 + 2.

Define a map CWt(n)/ ~.— P(n) by sending x to the partition with parts (n1+1), (na+2),
where nq, ng, etc., are as in Proposition 3.3. By the uniqueness part of that proposition, our
map is an embedding. The following theorem completes the classification of Irr(S,) =

Wt(n)/ ~.
Theorem 3.4. We have Wt(n) = CWt(n), ~=~. and CWt(n)/ ~.— P(n).
Proof. We have a surjection Wt(n)/ ~.— Wt(n)/ ~ and embeddings
(Wt(n)/ ~.) = (CWt(n)/ ~.) = P(n).
Therefore we get the following chain of inequalities:
(Wt(n)/ ~ [ < [Wt(n)/ ~c [ <[CWt(n)/ ~ [ < [P(n)|

By Introduction to Lecture 1, |Irr(S,)| = |Wt(n)/ ~ | = |P(n)|. So all these embeddings
and a surjection are bijections. O

Now let us relate Wt(n) to the set of standard Young tableauz SYT(n). Recall that a
standard Young tableaux on a Young diagram A with n boxes is a filling of A with numbers
from 1 to n that strictly increase bottom to top and left to right. For example, these two
fillings are examples of Young tableaux of shape (3, 2).

415 315
11213 1124

To a Young tableaux T' we assign its content as follows. Let (z;,y;) be the coordinate
of the box numbered by i. Then the content ¢(T') of T is, by definition, (1 — y1, 22 —
Y2, ..., Ty — Yn). The following two collections are contents of the tableaux in the previous
example: (0,1,2,—1,0) and (0,1, —1,2,0).
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Proposition 3.5. The map T + ¢(T') is a biijection SYT(n) — Wt(n) that intertwines the
surjections SYT(n) — P(n) (taking the shape) and Wt(n) — P(n).

Proof. We can define an admissible permutation of k and k+ 1 in a tableaux T': it permutes
k and k + 1 if the result is still a tableau. For example, the two tableaux above are obtained
from one another by permuting 3 and 4.

The admissible permutations give rise to an equivalence relation ~. on SYT(n). Clearly,
an admissible permutation of k, k 4+ 1 in T" corresponds to the admissible permutation s, of
¢(T). It is not hard to show that ¢(T") satisfies conditions (b1)-(b3). So ¢(T') is indeed an
element of CWt(n) and the image of ¢ is the union of equivalence classes for ~..

We can define normal Young tableaux, where we fill the first row by numbers from 1 to
some Ny, then the second row by the numbers from n; + 1 to ny + ns, etc., for example, the
first tableau above is normal. Clearly, if 7" is normal, then so is ¢(T"). From Proposition 3.3,
it follows that c is surjective. On the other hand, it is easy to check that c is injective. [
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