
LECTURE 2: REPRESENTATIONS OF SYMMETRIC GROUPS, II

IVAN LOSEV

1. Introduction

Recall that last time we have introduced the set of weights Wt(n) ⊂ Cn and an equivalence
relation ∼ on Wt(n). Our goal is to describe this set and this equivalence relation – the
equivalence classes are in a natural bijection with Irr(Sn). The first step here is as follows.
Pick a path P = V 1 → V 2 → . . . → V n in the branching graph and an integer k with
1 < k < n. We fix all vertices but V k and vary V k. The questions that we are going
to answer: how many paths do we get? What is the relation between their weights? Let
Path(P, k) be the resulting set of paths and V n

P,k := Span(vP ′|P ′ ∈ Path(P, k)). We will see
that V n

P,k is an irreducible Zk−1(k+1)-submodule in V n, where, recall, Zk−1(k+1) stands for
the centralizer of CSk−1 inside CSk+1. Next, we will construct the degenerate affine Hecke
algebra H(2) and its homomorphism to Zk−1(k + 1) so that V n

P,k becomes an irreducible
H(2)-module. We will obtain a complete classification of the finite dimensional irreducible
H(2)-modules. This will ultimately allow us to describe the set Wt(n) and ∼.

2. Degenerate affine Hecke algebras

2.1. Comparing V n
P,k to HomSk−1

(V k−1, V k+1). Recall that the space HomSk−1
(V k−1, V k+1)

has a basis φP , where P runs over Path(V k−1, V k+1). The space V n
P,k has a basis indexed by

the same set, vP1PP2 , where P1 = V 1 → . . . → V k−1, P2 = V k+1 → . . . → V n are the fixed
parts of the paths in Path(P, k).

Lemma 2.1. The map ψ : HomSk−1
(V k−1, V k+1) → V n given by φ 7→ φP2 ◦ φ(vP1) is a

Zk−1(k + 1)-equivariant embedding whose image coincides with V n
P,k.

Proof. By Remark 3.2 in Lecture 1 (concatenation of paths gives the composition of homo-
morphisms), vP1PP2 is proportional to φP2(φP (vP 1)). This shows that ψ is an embedding
whose image coincides with V n

P,k. It remains to check that it is Zk−1(k + 1)-equivariant.
Note that φP2 is CSk+1-equivariant and hence is Zk−1(k+ 1)-equivariant. By Remark 2.3 in
Lecture 1, we have [z · φ](u) = z · φ(u) for z ∈ Zk−1(k + 1), φ ∈ HomSk−1

(V k−1, V k+1) and
u ∈ V k−1. This implies the Zk−1(k + 1)-equivariance of ψ. �

Recall the Jucys-Murphy elements Lm =
∑m−1

i=1 (im). We have Lk, Lk+1, (k, k + 1) ∈
Zk−1(k + 1).

Corollary 2.2. The subspace V n
P,k is stable under Lk, Lk+1, (k, k + 1) (the latter stands for

the transposition of k, k + 1) and has no proper stable subspaces.

Proof. Recall, Theorem 2.4 from Lecture 1, that Zk−1(k + 1) is generated by Zk−1(k −
1), Lk, Lk+1, (k, k + 1). By (1) of Corollary 2.5 of Lecture 1, Zk−1(k − 1) is in the center
of Zk−1(k + 1). So elements of Zk−1(k − 1) act by scalars on any irreducible Zk−1(k + 1)-
module U . So U is irreducible with respect to Lk, Lk+1, (k, k+1). Since V n

P,k is an irreducible
Zk−1(k + 1)-module, we are done. �
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2.2. Degenerate affine Hecke algebra H(2). Corollary 2.2 motivates us to find relations
between Lk, Lk+1, (k, k+ 1). Then we can form an associative algebra with three generators
corresponding to Lk, Lk+1, (k, k + 1) and relations we have found, the space V n

P,k will be an
irreducible module over this algebra.

Lemma 2.3. We have the following relations

(2.1) LkLk+1 = Lk+1Lk, (k, k + 1)2 = 1, (k, k + 1)Lk = Lk+1(k, k + 1)− 1.

Proof. The element Lk+1 commutes with CSk and hence with Lk ∈ CSk. This gives the first
relation. The second relation is obvious. The left hand side of the third relation is

(k, k + 1)
k−1∑
i=1

(ik) =
k−1∑
i=1

(k, k + 1)(ik) =
k−1∑
i=1

(i, k, k + 1).

The right hand side is(
k∑

i=1

(i, k + 1)

)
(k, k + 1)− 1 =

k+1∑
i=1

(i, k + 1)(k, k + 1)− 1 =

=
k−1∑
i=1

(i, k, k + 1) + (k, k + 1)2 − 1 =
k−1∑
i=1

(i, k, k + 1).

These computations prove the third relation. �

Define the degenerate affine Hecke algebra H(2) by generators X1, X2, T and relations that
mirror those found in Lemma 2.1.

X1X2 = X2X1, T
2 = 1, TX1 = X2T − 1.

There is a consequence of these relations: X1T = TX2 − 1 (multiply the third relation by T
both from the left and from the right).

Our conclusion is that we have a unique homomorphism H(2) → Zk−1(k + 1) given on
generators by X1 7→ Lk, X2 7→ Lk+1, T 7→ (k, k + 1).

Corollary 2.4. The space V n
P,k is an irreducible H(2)-module.

2.3. Classification of irreducible H(2)-modules. Let us classify the finite dimensional
irreducible H(2)-modules M .

Since X1, X2 commute, they have a common eigenvector m ∈M . Let X1m = am,X2m =
bm, where a, b ∈ C.

Let us consider two cases:
1) Tm is proportional to m. Since T 2 = 1, we have two options:
1.1) Tm = m. Let us apply the third relation to m. The left hand side gives TX1m = am,

while the right hand side gives (X2T − 1)m = (b− 1)m, so here b = a+ 1.
1.2) Tm = −m. Similarly to the previous case, we get b = a− 1.
2) m and Tm are linearly independent. Let us see how X1, X2 act on Tm:

X1(Tm) = [X1T = TX2 − 1] = TX2m−m = b(Tm)−m,

X2(Tm) = [X2T = TX1 + 1] = TX1m+m = a(Tm) +m.
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In particular, we see that Span(m,Tm) is stable under H(2). Since M is irreducible, we see
that m and Tm form a basis in M . In this basis, we have

(2.2) T 7→
(
0 1
1 0

)
, X1 7→

(
a 0
−1 b

)
, X2 7→

(
b 0
1 a

)
.

In particular, we see that, in case 2), two modulesM,M ′ that give the same pair of eigenval-
ues a, b are isomorphic. Note that if b = a± 1, then (2.2) give a reducible module. Indeed,
assume in the sake of being definite, that b = a+1. Then the line C(m+Tm) is a submodule,
and our 2-dimensional module is a non-split extension of the 1-dimensional modules in 1.1)
and 1.2). In particular, the pair (a, b) of eigenvalues for X1, X2 determines any irreducible
H(2)-module uniquely up to an isomorphism. Let us denote the corresponding module by
M(a, b).

Note that if a ̸= b, b ± 1, then dimM(a, b) = 2 and the action of X1, X2 on M(a, b)
is diagonalizable, as X1 has distinct eigenvalues and X2 commutes with X1. The pairs of
eigenvalues that appear are (a, b) and (b, a). It follows that M(a, b) ∼= M(b, a). Moreover, if
M(a, b) =M(a′, b′) and (a, b) ̸= (a′, b′), then b ̸= a± 1, and a′ = b, b′ = a.

We arrive at the following classification result.

Proposition 2.5. The finite dimensional irreducible H(2)-modules are classified by pairs of
complex numbers, (a, b) 7→M(a, b), with M(a, b) ∼= M(b, a) if b ̸= a, a± 1. The pair (a, b) is
a pair of simultaneous eigenvalues of X1, X2 in M(a, b). Moreover, the following is true.

(1) If b = a+ 1, then M(a, b) = C with T 7→ 1, X1 7→ a,X2 7→ b.
(2) If b = a− 1, then M(a, b) = C with T 7→ −1, X1 7→ a,X2 7→ b.
(3) If b ̸= a ± 1, then formulas (2.2) define an irreducible representation, and this is

M(a, b).
(4) The action of X1, X2 on M(a, b) is diagonalizable if and only if a ̸= b.

2.4. Algebras H(d). One can define the algebra H(d) for all d > 1. It is generated by
generators X1, . . . , Xd, T1, . . . , Td−1 with relations:

XiXj = XjXi,

T 2
i = 1, TiTj = TjTi, for |i− j| > 1, TiTi+1Ti = Ti+1TiTi+1,

XiTj = TjXi, for i− j ̸= 0, 1, TiXi = Xi+1Ti − 1.

Note that in the second line we have precisely the relations for the transpositions (i, i+1) ∈
CSn, i = 1, . . . , n − 1. So the map (i, i + 1) 7→ Ti extends to an algebra homomorphism
CSd → H(d). We also have an algebra homomorphism C[X1, . . . , Xd] → H(d) given in an
obvious way.

Also note that we have a homomorphism H(d) → Zn−d(n) with Xi 7→ Ln−d+i, Ti 7→
(n − d + i, n − d + i + 1). In particular, CSn is a quotient of H(n) by the two-sided ideal
generated by X1, the element Xi gets mapped to Li. The algebra H(d) first appeared in
connection with Yangians, [D], and then was used to study the representations of the usual
affine Hecke algebra, [L], that, in its turn, arises in the study of the representations of
GL(Qp).

A classification of the finite dimensional irreducible H(d)-modules and a computation of
their dimensions is known but isn’t easy, formulas will be in terms of so called Kazhdan-
Lusztig polynomials, see [BK].



4 IVAN LOSEV

3. Completion of classification

3.1. Consequences for weights. Here we are going to get some restrictions for wP ′ , where
P ′ ∈ Path(P, k). Let wP = (w1, . . . , wn) and wP ′ = (w′

1, . . . , w
′
n). Recall (Lemma 3.3 of

Lecture 1) that w′
i is completely determined by V ′

i and V ′
i−1. Since V

′
i = Vi when i ̸= k, we

see that w′
i = wi if i ̸= k, k + 1.

Below we are going to use the following notation. We write si for (i, i + 1) ∈ Sn. For
x := (x1, . . . , xn) ∈ Cn, we write six for (x1, . . . , xi+1, xi, . . . , xn).

Proposition 3.1. Let P be a path of length n. The following is true:

(a) If wk ̸= wk+1 ± 1, then skwP is a weight equivalent to wP .
(b1) w1 = 0.
(b2) wk ̸= wk+1 for any k.
(b3) If wk = wk+2, then wk+1 ̸= wk ± 1.

Proof. The proof is based on the observation that if P ′ ∈ Path(P, k), then V n
P,k

∼= M(w′
k, w

′
k+1),

an isomorphism of H(2)-modules, where on the left hand side the structure of the module
is given by X1 7→ Lk, X2 7→ Lk+1, T 7→ (k, k + 1). So we can use Proposition 2.5.

In the situation of (a), the moduleM(wk, wk+1) is two-dimensional. So Path(P, k) consists
of two elements, P and P ′ ̸= P . Since M(w′

k, w
′
k+1)

∼= V n
P,k

∼= M(wk, wk+1), we use (3) of
Proposition 2.5 to see that w′

k = wk+1, w
′
k+1 = wk. This proves (a).

(b1) follows from L1 = 0.
To prove (b2), we note that the action of X1, X2 on V

n
P,k

∼= M(wk, wk+1) is diagonalizable.
So wk ̸= wk+1 by (4) of Proposition 2.5.

Let us prove (b3). Assume the converse, say, wk = wk+2 = wk+1 − 1. Then CvP ∼=
M(wk, wk + 1) via X1 7→ Lk, X2 7→ Lk+1, T 7→ (k, k + 1). In particular, (k, k + 1)vP = vP .
Similarly, (k + 1, k + 2)vP = −vP . But (k + 1, k)(k + 1, k + 2)(k, k + 1) = (k + 1, k +
2)(k, k + 1)(k + 1, k + 2) in Sn. Applying the two sides to vP , we arrive at −vP = vP .
Contradiction. �

3.2. Combinatorial weights and combinatorial equivalence. Motivated by (a), define
an equivalence relation ∼c (combinatorial equivalence) on Cn by x ∼ y if y is obtained from
x by a sequence of permutations of adjacent elements whose difference is not ±1 (we call
such a permutation admissible). We define the subset CWt(n) ⊂ Cn (combinatorial weights)
as the set of all x such that any y with y ∼c x satisfies (b1)-(b3). The next lemma follows
from Proposition 2.5.

Lemma 3.2. Wt(n) is the union of some equivalence classes for ∼c in CWt(n). Moreover,
for w,w′ ∈ Wt(n), we have w ∼c w

′ ⇒ w ∼ w′.

Note that CWt(n) ⊂ Zn.
We are going to embed the set of equivalence classes CWt(n)/ ∼c into P(n), the set of

partitions on n. This is done by reducing an element of CWt(n) to a “normal form”. We say
that an element x ∈ CWt(n) is normal if it has the form

(0, 1, . . . , n1,−1, 0, . . . , n2,−2, . . . , n3, . . .),

where n1 + 1 > n2 + 2 > . . . > 0.

Proposition 3.3. For any y ∈ CWt(n), there exists a unique normal x ∈ CWt(n) with
y ∼c x.
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Proof. Let n1 be the maximal entry in y. We can find y′ ∼c y such that y′k = n1 and
y′k+1, . . . , y

′
n < n1, while there is no other z ∼c y with zk, . . . , zn < n1 (the maximal entries

in y′ are as far to the left as possible). We claim that k = n1 + 1 and yi = i − 1 for i 6 k.
Indeed, if y′k−1 ̸= n1 − 1, then we can switch y′k−1 and y′k (here we use (b2)), etc.

Then we freeze the first n1 + 1 entries in y′ (we no longer permute them) and pick the
maximal unfrozen entry n2 in y′. Again, consider y′′, where the entries n2 are as far to the
left as possible (with the first n1 +1 entries frozen). Similarly to the previous paragraph, y′′

starts with 0, 1, . . . , n1, a, a + 1, . . . , n2. If a < −1, then we can move a all the way to the
left and get a contradiction with (b1). If a > −1, then we can move it the left until we get
a segment a, a+ 1, a, which contradicts (b3). So a = −1.

Then we freeze the first (n1 + 1) + (n2 + 2) entries and repeat the argument. This shows
the existence of x.

Uniqueness follows from the observation that n1 is the maximal element of y1, . . . , yn, n2

is maximal after removing 0, 1, . . . , n1, etc. �

3.3. Young diagrams and tableaux, finally. Partitions of n that are often depicted as
Young diagrams, the following diagram corresponds to the partition 5 = 3 + 2.

Define a map CWt(n)/ ∼c→ P(n) by sending x to the partition with parts (n1+1), (n2+2),
where n1, n2, etc., are as in Proposition 3.3. By the uniqueness part of that proposition, our
map is an embedding. The following theorem completes the classification of Irr(Sn) =
Wt(n)/ ∼.

Theorem 3.4. We have Wt(n) = CWt(n),∼=∼c and CWt(n)/ ∼c
∼−→ P(n).

Proof. We have a surjection Wt(n)/ ∼c� Wt(n)/ ∼ and embeddings

(Wt(n)/ ∼c) ↪→ (CWt(n)/ ∼c) ↪→ P(n).

Therefore we get the following chain of inequalities:

|Wt(n)/ ∼ | 6 |Wt(n)/ ∼c | 6 |CWt(n)/ ∼c | 6 |P(n)|

By Introduction to Lecture 1, | Irr(Sn)| = |Wt(n)/ ∼ | = |P(n)|. So all these embeddings
and a surjection are bijections. �

Now let us relate Wt(n) to the set of standard Young tableaux SYT(n). Recall that a
standard Young tableaux on a Young diagram λ with n boxes is a filling of λ with numbers
from 1 to n that strictly increase bottom to top and left to right. For example, these two
fillings are examples of Young tableaux of shape (3, 2).

1 2 3

4 5

1 2 4

3 5

To a Young tableaux T we assign its content as follows. Let (xi, yi) be the coordinate
of the box numbered by i. Then the content c(T ) of T is, by definition, (x1 − y1, x2 −
y2, . . . , xn − yn). The following two collections are contents of the tableaux in the previous
example: (0, 1, 2,−1, 0) and (0, 1,−1, 2, 0).
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Proposition 3.5. The map T 7→ c(T ) is a biijection SYT(n) → Wt(n) that intertwines the
surjections SYT(n) � P(n) (taking the shape) and Wt(n) � P(n).

Proof. We can define an admissible permutation of k and k+1 in a tableaux T : it permutes
k and k+1 if the result is still a tableau. For example, the two tableaux above are obtained
from one another by permuting 3 and 4.

The admissible permutations give rise to an equivalence relation ∼c on SYT(n). Clearly,
an admissible permutation of k, k + 1 in T corresponds to the admissible permutation sk of
c(T ). It is not hard to show that c(T ) satisfies conditions (b1)-(b3). So c(T ) is indeed an
element of CWt(n) and the image of c is the union of equivalence classes for ∼c.

We can define normal Young tableaux, where we fill the first row by numbers from 1 to
some n1, then the second row by the numbers from n1 + 1 to n1 + n2, etc., for example, the
first tableau above is normal. Clearly, if T is normal, then so is c(T ). From Proposition 3.3,
it follows that c is surjective. On the other hand, it is easy to check that c is injective. �
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