
LECTURE 20: KAC-MOODY ALGEBRA ACTIONS ON CATEGORIES, II

IVAN LOSEV

1. Introduction

1.1. Recap. In the previous lecture we have considered the category CF :=
⊕

n>0 FSn -mod.
We have equipped it with two endofunctors, E =

⊕
n Res

n
n−1 and F =

⊕
n Ind

n
n+1 that are

biadjoint. We have decomposed E into the direct sum of eigenfunctors, E =
⊕

i∈ZF
Ei, for

the endomorphism X that is given by XMm = Lnm for M ∈ FSn -mod, where Ln is the
Jucys-Murphy element

∑n−1
i=1 (in). We have also considered the corresponding decomposition

F =
⊕

i∈ZF
Fi.

Besides, we have introduced the decomposition FSn -mod =
⊕

A FSn -modA, where the
summation is taken over all cardinality n multi-subsets in ZF, and FSn -modA consists of
all M ∈ FSn -mod such that P (L1, . . . , Ln) acts on M with a single eigenvalue P (A), for
every P ∈ Z[x1, . . . , xn]

Sn . This decomposition is related to the functors Ei, Fi as follows.
Let πA denote the projection FSn -mod � FSn -modA. Then, for M ∈ FSn -modA, we
have EiM = πA\{i}(EM), FiM = πA∪{i}(FM). Below, we will write CF,A = FS|A| -modA.
So we get the direct sum decomposition CF =

⊕
A CF,A, where the sum is taken over all

multi-subsets A of ZF.
Finally, we have also introduced an endomorphism T of E2: TMm = (n− 1, n)m for m ∈

M,M ∈ FSn -mod. We have seen that the assignment Xi 7→ 1i−1X1d−i, Ti 7→ 1i−1T1d−i−1

extends to an algebra homomorphism H(d) → End(Ed).

1.2. Goals. First of all, we will show that [Ei], [Fi], i ∈ ZF, together with the decomposition

[CF] =
⊕

A[CF,A] define the structure of a weight representation of ŝlp (if charF = p) or
of sl∞ (if charF = p). The characteristic 0 case is easy as we can determine [CF], [Ei], [Fi]
very explicitly. The case when charF = p is more tricky because we do not understand the
structure of [CF] at this point. We will treat this case by reducing to characteristic 0.

After this is done we will give an abstract definition of an action of ŝlp on a category (CF
for charF = p will be the main example). Then we will give an application: modulo some

results of Chuang and Rouquier, we will show that [CF] is an irreducible ŝlp-module.

2. ŝlp-action on K0

Let F be a characteristic p field. In this section, we will show that the operators [Ei], [Fi]

on [CF] give rise to a ŝlp-action. Moreover, we will check that [CF] =
⊕

A[CF,A], where we

write CA for FS|A| -modA, is a weight decomposition for s̃lp.

2.1. Comparison of K0’s in characteristics 0 and p. Consider the following situation.
Let R be a local Dedekind domain containing Z. Let K denote the fraction field of R and let
F be the residue field, we will assume that it has characteristic p. E.g., we can take R = Zp,
then K = Qp,F := Fp. Let AR be an associative unital R-algebra that is a free finite rank
R-module. An example is provided by RSn. Set AK = K⊗R AR, AF = F⊗R AR.
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Consider the categories AK -mod and AF -mod of finite dimensional AK- and AF-modules.
We are going to produce a group map K0(AK -mod) → K0(AF -mod). Take M ∈ AK -mod.
We can pick an R-lattice MR ⊂ M meaning a finitely generated R-submodule MR with
K⊗R MR

∼−→ M that is automatically free over R. Then we get MF := F⊗R MR ∈ AF -mod.
There are different lattices MR ⊂ M leading to non-isomorphic modules MF. However, a
standard fact (left as an exercise) is that the class of MF in K0 does not depend on the choice
of MR. So we do get a well-defined map K0(AK -mod) → K0(AF -mod).

Lemma 2.1. This map is additive.

Proof. Let M ′ ⊂ M be an AK-submodule with the projection π : M → M/M ′. Then
M ′

R := M ′ ∩ MR is a lattice in M ′, while π(MR) is a lattice in M/M ′ so that we have an
exact sequence 0 → M ′

R → MR → π(MR) → 0. Since π(MR) is free over R, we see that the
sequence 0 → M ′

F → MF → F⊗R π(MR) → 0 is exact. This completes the proof. �
The following result is much more interesting.

Proposition 2.2. The map K0(KSn -mod) → K0(FSn -mod) is surjective.

We will discuss why this is true in the next lecture.

2.2. Fock space. Let CK :=
⊕

n>0KSn -mod. The C-vector space [CK] has basis [Mλ] labeled
by all partitions λ. It is customary to write |λ⟩ for [Mλ]. The space CK is known as the Fock
space. We will denote it by F .

Let us produce an action of sl∞ on F . We set e∞i |λ⟩ = |µ⟩, where µ is obtained from λ by
deleting a box of content i if such µ exists, and e∞i |λ⟩ = 0, else. Similarly, set f∞

i |λ⟩ = |ν⟩
if ν is obtained from λ by adding a box of content i if such ν exists, and f∞

i |λ⟩ = 0, else.
Finally, set h∞

i |λ⟩ = (a∞i (λ) − r∞i (λ))|λ⟩, where a∞i (λ) is the number of addable boxes of
content i in λ and r∞i (λ) is the number of removable boxes of content i in λ.

Lemma 2.3. The operators e∞i , f∞
i give rise to a weight representation of sl∞ in F (with

h∞
i as specified above).

The proof is left as an exercise.
We have seen in Section 2.1 of Lecture 19 that e∞i = [EK

i ] (we write EK
i for the func-

tor Ei for CK). From the adjointness of EK
i , F

K
i , we conclude that HomCK(F

K
i Mλ,Mν) =

HomCK(Mλ, E
K
i Mν) and therefore FK

i Mλ = Mν if ν is obtained from λ by adding a box of
content i if such ν exists, and FK

i Mλ = 0, else. So [FK
i ] = f∞

i .

Let us proceed to an action of s̃lp on F . For j ∈ Z/pZ, by a j-box we mean a box whose
content is congruent to j modulo i. Let aj(λ), rj(λ) denote the number of addable and
removable j-boxes in λ. We set

ej =
∑

i≡j mod p

e∞i , fj =
∑

i≡j mod p

e∞i , hj|λ⟩ = (aj(λ)− rj(λ))|λ⟩, d|λ⟩ = |λ||λ⟩.

The next lemma follows mostly from Lemma 2.3.

Lemma 2.4. The operators ej, fj define a weight representation of s̃lp in F (with hj, d acting
as specified).

Example 2.5. Take the diagram λ = (3, 1, 1, 1) and assume p = 3. This diagram has
two removable boxes: (3, 1), (1, 4) and three addable boxes: (4, 1), (2, 2), (1, 5). The boxes
(4, 1), (2, 2), (1, 4) are 0-boxes, while (3, 1), (1, 5) are 2-boxes and there are no 1-boxes. So we
have e0|λ⟩ = |µ2⟩, e1|λ⟩ = 0, e2|λ⟩ = |µ1⟩, where µ1 = (2, 1, 1, 1), µ2 = (3, 1, 1). Further, we
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have f0|λ⟩ = |ν1⟩ + |ν2⟩, f1|λ⟩ = 0, f2|λ⟩ = |ν3⟩, where ν1 = (4, 1, 1, 1), ν2 = (3, 2, 1, 1), ν3 =
(3, 1, 1, 1, 1). So h0|λ⟩ = |λ⟩, h1|λ⟩ = h2|λ⟩ = 0 and d|λ⟩ = 6|λ⟩.

Now let us discuss the weight spaces for s̃lp in F .

Lemma 2.6. For diagrams λ, λ′ the following are equivalent.

(1) c(λ) mod p = c(λ′) mod p (the equality of multisubsets of ZF).
(2) aj(λ)− rj(λ) = aj(λ

′)− rj(λ
′) for all j and |λ| = |λ′|.

Proof. Let nj denote the number of j-boxes in λ so that (1) means nj(λ) = nj(λ
′) for all

j. Adding a j-box, we increase aj±1 − rj±1 by 1 (if p > 2; for p = 2 we increase it by
2) and decrease aj − rj by 2. We also increase |λ| by 1. It follows that aj(λ) − rj(λ) =
nj+1(λ)+nj−1(λ)− 2nj(λ)+ δj0. Clearly, |λ| =

∑
j nj(λ). These equalities easily imply that

(1) and (2) are equivalent. �

For a multisubset A ⊂ ZF define the subspace FA as the span of all |λ⟩ with c(λ) = A. So

F =
⊕

AFA is the weight decomposition for the action of s̃lp.

2.3. Action of s̃lp on [CF]. Now we are ready to prove the following theorem.

Theorem 2.7. The surjection [CK] � [CF] intertwines the operator ej with [EF
j ], the operator

fj with [F F
j ], and maps FA onto [FSn -modA], where n = |A|. In particular, [CF] =

⊕
A[CF,A]

is a weight representation of s̃lp.

Proof. The proof is in several steps. Let ρ : F � [CF] denote the surjection.
Step 1. Let us show that ρ(FA) = [CF,A]. Since ρ is a surjection, it is enough to show that

ρ(FA) ⊂ [CF,A]. Pick λ with c(λ) = Ã, where Ã mod p = A. Then ρ(|λ⟩) = [Mλ,F], where
Mλ,R ⊂ Mλ,K is an R-form. For P ∈ Z[x1, . . . , xn]

Sn , the polynomial P (L1, . . . , Ln) acts on

Mλ,K with the single eigenvalue P (Ã). So the same is true for Mλ,R and hence for Mλ,F. It
follows that Mλ,F ∈ FSn -modA.

Step 2. Set f =
∑

j fj, e =
∑

j ej and let us show that ρ ◦ e = [E] ◦ ρ, ρ ◦ f = [F ] ◦ ρ.
To prove the former, note that, tautologically, Resnn−1 MR is an R-lattice in Resnn−1MK and

hence (Resnn−1 M)F = Resnn−1(MF). To prove ρ ◦ f = [F ] ◦ ρ note that Indn−1
n MR is an

R-lattice in Indn−1
n MK.

Step 3. Let us prove that ρ ◦ ei = [Ei] ◦ ρ. It is enough to prove that ρ(ei|λ⟩) = [Ei](ρ|λ⟩).
Note that ei|λ⟩ coincides with the projection of e|λ⟩ to Fc(λ)\{i} (here we consider c(λ) modulo
p). From Step 1, it follows that ρ(ei|λ⟩) coincides with the projection to [FSn -modA] of
ρ(e|λ⟩). By Step 2, ρ(e|λ⟩) equals the projection to [FSn -modA] of [E] ◦ ρ(|λ⟩). As we have
seen above, the last projection coincides with [Ei](ρ(|λ⟩)).

The proof of ρ ◦ fi = [Fi] ◦ ρ is similar. �

3. Action of ŝlp on a category

Let F be a characteristic p field and let C be an F-linear abelian category. We suppose
that all objects in C have finite length. The category C =

⊕
n FSn -mod is of this kind.

An action of ŝlp on C is a collection of data together with four axioms. For us, the
data is a pair of functors E,F with fixed adjointness – F is left adjoint to E – as well as
endomorphisms X ∈ End(E), T ∈ End(E2). The axioms are as follows:

(1) F is isomorphic to a right adjoint of E (and hence both E,F are exact).
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(2) E =
⊕

i∈ZF
Ei, where Ei is the generalized eigenfunctor with eigenvalue i for the

action of X on E. By the fixed adjointness, we get the decomposition F =
⊕

i∈ZF
Fi

so that Fi is left adjoint to Ei.
(3) We have a weight decomposition C =

⊕
ν Cν such that the decomposition [C] =⊕

ν [Cν ] and the maps [Ei], [Fi] define an integrable representation of ŝlp on [C]. Re-

call that a representation of ŝlp is called integrable if the operators ei, fi are locally
nilpotent. Also note that, thanks to the weight decomposition of C, Fi is isomorphic
to the right adjoint of Ei.

(4) The assignmentXi 7→ 1i−1X1d−i, Ti 7→ 1i−1T1d−1−i lifts to an algebra homomorphism
H(d) → End(Ed), where we write H(d) for the degenerate affine Hecke algebra.

We have already seen that we have a categorical ŝlp-action on
⊕

n>0 FSn -mod.
Let us make a couple of remark regarding this definition. First, it has a multiplicative

version that will work for the categories of modules over the type A Hecke algebra (an
interesting case is when q is a root of 1). Second, we can extend this definition to other Lie
algebras of type A. For example, to get a categorical action of sl2 we need to require that
X acts on E with a single eigenvalue and to modify (3) in an obvious way. In this way,

a categorical action of ŝlp gives rise to p categorical actions of sl2. It is possible to define
categorical actions of Kac-Moody algebras outside of type A but this requires essentially new
ideas. Finally, let us note that the functors E,F are symmetric, i.e., we can have another
categorical action with these functors swapped (for this we need, in particular, that the
algebra H(d) is naturally identified with its opposite, which is left as an exercise).

4. Application: crystals

4.1. Ei and Fi on irreducible objects. We would like to understand the structure of
EiL, FiL, where L is a simple object in C. Here we have the following result due to Chuang
and Rouquier (who have introduced the notion of a categorical sl2-action).

Proposition 4.1. The following is true.

(1) Suppose EiL ̸= {0}. Then the head (the maximal semisimple quotient) and the socle
(the maximal semisimple sub) of EiL are simple and isomorphic (let’s denote this
simple object by ẽiL).

(2) Let d be the maximal number such Ed
i L ̸= 0. Then ei[L] = d[ẽiL] +

∑
L0
[L0], where

the sum is taken over simples L0 with Ed−1
i L0 = 0.

The similar results also hold for FiL (in particular, we get the simple/head socle of FiL to

be denoted by f̃iL).

If EiL = 0 (resp., FiL = 0), then we set ẽiL = 0 (resp., f̃iL). So we get a collection of

maps ẽi, f̃i : Irr(C) → Irr(C)⊔{0}. A nice and very useful exercise is to check that if ẽiL ̸= 0,

then f̃iẽiL = L.
Proposition 4.1 implies, in particular, that the classes [L], L ∈ Irr(C), form a so called

perfect basis (as defined by Berenstein and Kazhdan). This implies that the maps ẽi, f̃i
endow Irr(C) with a crystal structure (a crystal is a combinatorial shadow of a Lie algebra
action first constructed by Kashiwara using quantum groups).

4.2. Irreducibility of
⊕

n[FSn -mod]. Using Proposition 4.1, we will show that the ŝlp-
module

⊕
n[FSn -mod] is irreducible (and hence it is the irreducible highest weight module

of weight ω0, a.k.a., the basic representation of ŝlp).
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Theorem 4.2. The ŝlp-module V :=
⊕

n[FSn -mod] is irreducible.

Proof. The module V is a quotient of F and so is an integrable highest weight representation.
Such a representation is irreducible if and only if it has a unique singular (=annihilated by all
ei) vector v. One such vector is [C] ∈ [FS0 -mod]. Moreover, the space V 0 of singular vectors
does not contain any other vector of the form [L]. Indeed,

∑
i ei[L] = [EL], but EL =

Resnn−1 L is nonzero if L ̸∈ [FS0 -mod]. The following lemma combined with Proposition
4.1 implies that V 0 is spanned by vectors of the form [L], L ∈ Irr(C). This completes the
proof. �
Lemma 4.3. Let V be an ŝlp-module and let B be a basis with the following property. Let
di(b) denote the maximal number d such that edi b ̸= 0. For any b ∈ B, i ∈ Z/pZ, we have

that either eib = 0 or eib = αẽib +
∑

b0
nb0b0, where α ̸= 0, if nb0 ̸= 0, then e

di(b)−1
i b0 = 0,

and ẽib ∈ B. Assume further that ẽib1 = ẽib2 ̸= 0 implies b1 = b2. Then the space of singular
vectors V 0 is spanned by V 0 ∩ B.

Proof. Pick v ∈ V 0 and expand it in the basis B, v =
∑

b∈B′ nbb, where nb ̸= 0 for all b ∈ B′.
Let d := max{di(b)|b ∈ B′}. Let B′

i := {b ∈ B′|di(b) = d}. Assume d > 0. Then

0 = edi v =
∑
b∈B′

i

mbẽ
d
i b,

where all mb’s are nonzero and all ẽdi b are distinct. We get a contradiction that finishes the
proof. �


