LECTURE 20: KAC-MOODY ALGEBRA ACTIONS ON CATEGORIES, II

IVAN LOSEV

1. Introduction

1.1. **Recap.** In the previous lecture we have considered the category $C_{\mathbb{F}} := \bigoplus_{n\geqslant 0} \mathbb{F}S_n$ -mod. We have equipped it with two endofunctors, $E = \bigoplus_n \operatorname{Res}_{n-1}^n$ and $F = \bigoplus_n \operatorname{Ind}_{n+1}^n$ that are biadjoint. We have decomposed E into the direct sum of eigenfunctors, $E = \bigoplus_{i\in\mathbb{Z}_{\mathbb{F}}} E_i$, for the endomorphism X that is given by $X_M m = L_n m$ for $M \in \mathbb{F}S_n$ -mod, where L_n is the Jucys-Murphy element $\sum_{i=1}^{n-1} (in)$. We have also considered the corresponding decomposition $F = \bigoplus_{i\in\mathbb{Z}_{\mathbb{F}}} F_i$.

Besides, we have introduced the decomposition $\mathbb{F}S_n$ -mod $= \bigoplus_A \mathbb{F}S_n$ -mod_A, where the summation is taken over all cardinality n multi-subsets in $\mathbb{Z}_{\mathbb{F}}$, and $\mathbb{F}S_n$ -mod_A consists of all $M \in \mathbb{F}S_n$ -mod such that $P(L_1, \ldots, L_n)$ acts on M with a single eigenvalue P(A), for every $P \in \mathbb{Z}[x_1, \ldots, x_n]^{S_n}$. This decomposition is related to the functors E_i, F_i as follows. Let π_A denote the projection $\mathbb{F}S_n$ -mod $\to \mathbb{F}S_n$ -mod_A. Then, for $M \in \mathbb{F}S_n$ -mod_A, we have $E_iM = \pi_{A\setminus\{i\}}(EM), F_iM = \pi_{A\cup\{i\}}(FM)$. Below, we will write $\mathcal{C}_{\mathbb{F},A} = \mathbb{F}S_{|A|}$ -mod_A. So we get the direct sum decomposition $\mathcal{C}_{\mathbb{F}} = \bigoplus_A \mathcal{C}_{\mathbb{F},A}$, where the sum is taken over all multi-subsets A of $\mathbb{Z}_{\mathbb{F}}$.

Finally, we have also introduced an endomorphism T of E^2 : $T_M m = (n-1,n)m$ for $m \in M, M \in \mathbb{F}S_n$ -mod. We have seen that the assignment $X_i \mapsto 1^{i-1}X1^{d-i}, T_i \mapsto 1^{i-1}T1^{d-i-1}$ extends to an algebra homomorphism $\mathcal{H}(d) \to \operatorname{End}(E^d)$.

1.2. **Goals.** First of all, we will show that $[E_i], [F_i], i \in \mathbb{Z}_{\mathbb{F}}$, together with the decomposition $[\mathcal{C}_{\mathbb{F}}] = \bigoplus_A [\mathcal{C}_{\mathbb{F},A}]$ define the structure of a weight representation of \mathfrak{sl}_p (if char $\mathbb{F} = p$) or of \mathfrak{sl}_{∞} (if char $\mathbb{F} = p$). The characteristic 0 case is easy as we can determine $[\mathcal{C}_{\mathbb{F}}], [E_i], [F_i]$ very explicitly. The case when char $\mathbb{F} = p$ is more tricky because we do not understand the structure of $[\mathcal{C}_{\mathbb{F}}]$ at this point. We will treat this case by reducing to characteristic 0.

After this is done we will give an abstract definition of an action of \mathfrak{sl}_p on a category ($\mathcal{C}_{\mathbb{F}}$ for char $\mathbb{F} = p$ will be the main example). Then we will give an application: modulo some results of Chuang and Rouquier, we will show that $[\mathcal{C}_{\mathbb{F}}]$ is an irreducible \mathfrak{sl}_n -module.

2. $\hat{\mathfrak{sl}}_n$ -ACTION ON K_0

Let \mathbb{F} be a characteristic p field. In this section, we will show that the operators $[E_i]$, $[F_i]$ on $[\mathcal{C}_{\mathbb{F}}]$ give rise to a \mathfrak{sl}_p -action. Moreover, we will check that $[\mathcal{C}_{\mathbb{F}}] = \bigoplus_A [\mathcal{C}_{\mathbb{F},A}]$, where we write \mathcal{C}_A for $\mathbb{F}S_{|A|}$ -mod_A, is a weight decomposition for \mathfrak{sl}_p .

2.1. Comparison of K_0 's in characteristics 0 and p. Consider the following situation. Let R be a local Dedekind domain containing \mathbb{Z} . Let \mathbb{K} denote the fraction field of R and let \mathbb{F} be the residue field, we will assume that it has characteristic p. E.g., we can take $R = \mathbb{Z}_p$, then $\mathbb{K} = \mathbb{Q}_p$, $\mathbb{F} := \mathbb{F}_p$. Let A_R be an associative unital R-algebra that is a free finite rank R-module. An example is provided by RS_n . Set $A_{\mathbb{K}} = \mathbb{K} \otimes_R A_R$, $A_{\mathbb{F}} = \mathbb{F} \otimes_R A_R$.

2 IVAN LOSEV

Consider the categories $A_{\mathbb{K}}$ -mod and $A_{\mathbb{F}}$ -mod of finite dimensional $A_{\mathbb{K}}$ - and $A_{\mathbb{F}}$ -modules. We are going to produce a group map $K_0(A_{\mathbb{K}}$ -mod) $\to K_0(A_{\mathbb{F}}$ -mod). Take $M \in A_{\mathbb{K}}$ -mod. We can pick an R-lattice $M_R \subset M$ meaning a finitely generated R-submodule M_R with $\mathbb{K} \otimes_R M_R \xrightarrow{\sim} M$ that is automatically free over R. Then we get $M_{\mathbb{F}} := \mathbb{F} \otimes_R M_R \in A_{\mathbb{F}}$ -mod. There are different lattices $M_R \subset M$ leading to non-isomorphic modules $M_{\mathbb{F}}$. However, a standard fact (left as an exercise) is that the class of $M_{\mathbb{F}}$ in K_0 does not depend on the choice of M_R . So we do get a well-defined map $K_0(A_{\mathbb{K}}$ -mod) $\to K_0(A_{\mathbb{F}}$ -mod).

Lemma 2.1. This map is additive.

Proof. Let $M' \subset M$ be an $A_{\mathbb{K}}$ -submodule with the projection $\pi: M \to M/M'$. Then $M'_R := M' \cap M_R$ is a lattice in M', while $\pi(M_R)$ is a lattice in M/M' so that we have an exact sequence $0 \to M'_R \to M_R \to \pi(M_R) \to 0$. Since $\pi(M_R)$ is free over R, we see that the sequence $0 \to M'_{\mathbb{F}} \to M_{\mathbb{F}} \to \mathbb{F} \otimes_R \pi(M_R) \to 0$ is exact. This completes the proof.

The following result is much more interesting.

Proposition 2.2. The map $K_0(\mathbb{K}S_n\operatorname{-mod}) \to K_0(\mathbb{F}S_n\operatorname{-mod})$ is surjective.

We will discuss why this is true in the next lecture.

2.2. Fock space. Let $\mathcal{C}_{\mathbb{K}} := \bigoplus_{n \geq 0} \mathbb{K} S_n$ -mod. The \mathbb{C} -vector space $[\mathcal{C}_{\mathbb{K}}]$ has basis $[M_{\lambda}]$ labeled by all partitions λ . It is customary to write $|\lambda\rangle$ for $[M_{\lambda}]$. The space $\mathcal{C}_{\mathbb{K}}$ is known as the Fock space. We will denote it by \mathcal{F} .

Let us produce an action of \mathfrak{sl}_{∞} on \mathcal{F} . We set $e_i^{\infty}|\lambda\rangle = |\mu\rangle$, where μ is obtained from λ by deleting a box of content i if such μ exists, and $e_i^{\infty}|\lambda\rangle = 0$, else. Similarly, set $f_i^{\infty}|\lambda\rangle = |\nu\rangle$ if ν is obtained from λ by adding a box of content i if such ν exists, and $f_i^{\infty}|\lambda\rangle = 0$, else. Finally, set $h_i^{\infty}|\lambda\rangle = (a_i^{\infty}(\lambda) - r_i^{\infty}(\lambda))|\lambda\rangle$, where $a_i^{\infty}(\lambda)$ is the number of addable boxes of content i in λ and $r_i^{\infty}(\lambda)$ is the number of removable boxes of content i in λ .

Lemma 2.3. The operators e_i^{∞} , f_i^{∞} give rise to a weight representation of \mathfrak{sl}_{∞} in \mathcal{F} (with h_i^{∞} as specified above).

The proof is left as an exercise.

We have seen in Section 2.1 of Lecture 19 that $e_i^{\infty} = [E_i^{\mathbb{K}}]$ (we write $E_i^{\mathbb{K}}$ for the functor E_i for $\mathcal{C}_{\mathbb{K}}$). From the adjointness of $E_i^{\mathbb{K}}$, $F_i^{\mathbb{K}}$, we conclude that $\operatorname{Hom}_{\mathcal{C}_{\mathbb{K}}}(F_i^{\mathbb{K}}M_{\lambda}, M_{\nu}) = \operatorname{Hom}_{\mathcal{C}_{\mathbb{K}}}(M_{\lambda}, E_i^{\mathbb{K}}M_{\nu})$ and therefore $F_i^{\mathbb{K}}M_{\lambda} = M_{\nu}$ if ν is obtained from λ by adding a box of content i if such ν exists, and $F_i^{\mathbb{K}}M_{\lambda} = 0$, else. So $[F_i^{\mathbb{K}}] = f_i^{\infty}$.

Let us proceed to an action of \mathfrak{sl}_p on \mathcal{F} . For $j \in \mathbb{Z}/p\mathbb{Z}$, by a j-box we mean a box whose content is congruent to j modulo i. Let $a_j(\lambda), r_j(\lambda)$ denote the number of addable and removable j-boxes in λ . We set

$$e_j = \sum_{i \equiv j \mod p} e_i^{\infty}, f_j = \sum_{i \equiv j \mod p} e_i^{\infty}, h_j |\lambda\rangle = (a_j(\lambda) - r_j(\lambda)) |\lambda\rangle, d|\lambda\rangle = |\lambda| |\lambda\rangle.$$

The next lemma follows mostly from Lemma 2.3.

Lemma 2.4. The operators e_j , f_j define a weight representation of \mathfrak{sl}_p in \mathcal{F} (with h_j , d acting as specified).

Example 2.5. Take the diagram $\lambda = (3, 1, 1, 1)$ and assume p = 3. This diagram has two removable boxes: (3, 1), (1, 4) and three addable boxes: (4, 1), (2, 2), (1, 5). The boxes (4, 1), (2, 2), (1, 4) are 0-boxes, while (3, 1), (1, 5) are 2-boxes and there are no 1-boxes. So we have $e_0|\lambda\rangle = |\mu_2\rangle, e_1|\lambda\rangle = 0, e_2|\lambda\rangle = |\mu_1\rangle$, where $\mu_1 = (2, 1, 1, 1), \mu_2 = (3, 1, 1)$. Further, we

have $f_0|\lambda\rangle = |\nu_1\rangle + |\nu_2\rangle$, $f_1|\lambda\rangle = 0$, $f_2|\lambda\rangle = |\nu_3\rangle$, where $\nu_1 = (4, 1, 1, 1)$, $\nu_2 = (3, 2, 1, 1)$, $\nu_3 = (3, 1, 1, 1, 1)$. So $h_0|\lambda\rangle = |\lambda\rangle$, $h_1|\lambda\rangle = h_2|\lambda\rangle = 0$ and $d|\lambda\rangle = 6|\lambda\rangle$.

Now let us discuss the weight spaces for \mathfrak{sl}_p in \mathcal{F} .

Lemma 2.6. For diagrams λ, λ' the following are equivalent.

- (1) $c(\lambda) \mod p = c(\lambda') \mod p$ (the equality of multisubsets of $\mathbb{Z}_{\mathbb{F}}$).
- (2) $a_j(\lambda) r_j(\lambda) = a_j(\lambda') r_j(\lambda')$ for all j and $|\lambda| = |\lambda'|$.

Proof. Let n_j denote the number of j-boxes in λ so that (1) means $n_j(\lambda) = n_j(\lambda')$ for all j. Adding a j-box, we increase $a_{j\pm 1} - r_{j\pm 1}$ by 1 (if p > 2; for p = 2 we increase it by 2) and decrease $a_j - r_j$ by 2. We also increase $|\lambda|$ by 1. It follows that $a_j(\lambda) - r_j(\lambda) = n_{j+1}(\lambda) + n_{j-1}(\lambda) - 2n_j(\lambda) + \delta_{j0}$. Clearly, $|\lambda| = \sum_j n_j(\lambda)$. These equalities easily imply that (1) and (2) are equivalent.

For a multisubset $A \subset \mathbb{Z}_{\mathbb{F}}$ define the subspace \mathcal{F}_A as the span of all $|\lambda\rangle$ with $c(\lambda) = A$. So $\mathcal{F} = \bigoplus_A \mathcal{F}_A$ is the weight decomposition for the action of \mathfrak{sl}_p .

2.3. Action of \mathfrak{sl}_p on $[\mathcal{C}_{\mathbb{F}}]$. Now we are ready to prove the following theorem.

Theorem 2.7. The surjection $[\mathcal{C}_{\mathbb{K}}] \twoheadrightarrow [\mathcal{C}_{\mathbb{F}}]$ intertwines the operator e_j with $[E_j^{\mathbb{F}}]$, the operator f_j with $[F_j^{\mathbb{F}}]$, and maps \mathcal{F}_A onto $[\mathbb{F}S_n\operatorname{-mod}_A]$, where n=|A|. In particular, $[\mathcal{C}_{\mathbb{F}}]=\bigoplus_A [\mathcal{C}_{\mathbb{F},A}]$ is a weight representation of \mathfrak{sl}_p .

Proof. The proof is in several steps. Let $\rho: \mathcal{F} \to [\mathcal{C}_{\mathbb{F}}]$ denote the surjection.

Step 1. Let us show that $\rho(\mathcal{F}_A) = [\mathcal{C}_{\mathbb{F},A}]$. Since ρ is a surjection, it is enough to show that $\rho(\mathcal{F}_A) \subset [\mathcal{C}_{\mathbb{F},A}]$. Pick λ with $c(\lambda) = \tilde{A}$, where $\tilde{A} \mod p = A$. Then $\rho(|\lambda\rangle) = [M_{\lambda,\mathbb{F}}]$, where $M_{\lambda,R} \subset M_{\lambda,\mathbb{K}}$ is an R-form. For $P \in \mathbb{Z}[x_1,\ldots,x_n]^{S_n}$, the polynomial $P(L_1,\ldots,L_n)$ acts on $M_{\lambda,\mathbb{K}}$ with the single eigenvalue $P(\tilde{A})$. So the same is true for $M_{\lambda,R}$ and hence for $M_{\lambda,\mathbb{F}}$. It follows that $M_{\lambda,\mathbb{F}} \in \mathbb{F}S_n$ -mod_A.

Step 2. Set $f = \sum_j f_j$, $e = \sum_j e_j$ and let us show that $\rho \circ e = [E] \circ \rho$, $\rho \circ f = [F] \circ \rho$. To prove the former, note that, tautologically, $\operatorname{Res}_{n-1}^n M_R$ is an R-lattice in $\operatorname{Res}_{n-1}^n M_{\mathbb{K}}$ and hence $(\operatorname{Res}_{n-1}^n M)_{\mathbb{F}} = \operatorname{Res}_{n-1}^n (M_{\mathbb{F}})$. To prove $\rho \circ f = [F] \circ \rho$ note that $\operatorname{Ind}_n^{n-1} M_R$ is an R-lattice in $\operatorname{Ind}_n^{n-1} M_{\mathbb{K}}$.

Step 3. Let us prove that $\rho \circ e_i = [E_i] \circ \rho$. It is enough to prove that $\rho(e_i|\lambda\rangle) = [E_i](\rho|\lambda\rangle)$. Note that $e_i|\lambda\rangle$ coincides with the projection of $e|\lambda\rangle$ to $\mathcal{F}_{c(\lambda)\setminus\{i\}}$ (here we consider $c(\lambda)$ modulo p). From Step 1, it follows that $\rho(e_i|\lambda\rangle)$ coincides with the projection to $[\mathbb{F}S_n\operatorname{-mod}_A]$ of $\rho(e|\lambda\rangle)$. By Step 2, $\rho(e|\lambda\rangle)$ equals the projection to $[\mathbb{F}S_n\operatorname{-mod}_A]$ of $[E] \circ \rho(|\lambda\rangle)$. As we have seen above, the last projection coincides with $[E_i](\rho(|\lambda\rangle))$.

The proof of $\rho \circ f_i = [F_i] \circ \rho$ is similar.

3. Action of $\hat{\mathfrak{sl}}_p$ on a category

Let \mathbb{F} be a characteristic p field and let \mathcal{C} be an \mathbb{F} -linear abelian category. We suppose that all objects in \mathcal{C} have finite length. The category $\mathcal{C} = \bigoplus_n \mathbb{F} S_n$ -mod is of this kind.

An action of \mathfrak{sl}_p on \mathcal{C} is a collection of data together with four axioms. For us, the data is a pair of functors E, F with fixed adjointness -F is left adjoint to E – as well as endomorphisms $X \in \text{End}(E), T \in \text{End}(E^2)$. The axioms are as follows:

(1) F is isomorphic to a right adjoint of E (and hence both E, F are exact).

- (2) $E = \bigoplus_{i \in \mathbb{Z}_{\mathbb{F}}} E_i$, where E_i is the generalized eigenfunctor with eigenvalue i for the action of X on E. By the fixed adjointness, we get the decomposition $F = \bigoplus_{i \in \mathbb{Z}_{\mathbb{F}}} F_i$ so that F_i is left adjoint to E_i .
- (3) We have a weight decomposition $\mathcal{C} = \bigoplus_{\nu} \mathcal{C}_{\nu}$ such that the decomposition $[\mathcal{C}] = \bigoplus_{\nu} [\mathcal{C}_{\nu}]$ and the maps $[E_i], [F_i]$ define an integrable representation of \mathfrak{sl}_p on $[\mathcal{C}]$. Recall that a representation of \mathfrak{sl}_p is called *integrable* if the operators e_i, f_i are locally nilpotent. Also note that, thanks to the weight decomposition of \mathcal{C} , F_i is isomorphic to the right adjoint of E_i .
- (4) The assignment $X_i \mapsto 1^{i-1}X1^{d-i}$, $T_i \mapsto 1^{i-1}T1^{d-1-i}$ lifts to an algebra homomorphism $\mathcal{H}(d) \to \text{End}(E^d)$, where we write $\mathcal{H}(d)$ for the degenerate affine Hecke algebra.

We have already seen that we have a categorical $\hat{\mathfrak{sl}}_p$ -action on $\bigoplus_{n\geqslant 0} \mathbb{F}S_n$ -mod.

Let us make a couple of remark regarding this definition. First, it has a multiplicative version that will work for the categories of modules over the type A Hecke algebra (an interesting case is when q is a root of 1). Second, we can extend this definition to other Lie algebras of type A. For example, to get a categorical action of \mathfrak{sl}_2 we need to require that X acts on E with a single eigenvalue and to modify (3) in an obvious way. In this way, a categorical action of \mathfrak{sl}_p gives rise to p categorical actions of \mathfrak{sl}_2 . It is possible to define categorical actions of Kac-Moody algebras outside of type A but this requires essentially new ideas. Finally, let us note that the functors E, F are symmetric, i.e., we can have another categorical action with these functors swapped (for this we need, in particular, that the algebra $\mathcal{H}(d)$ is naturally identified with its opposite, which is left as an exercise).

4. Application: Crystals

4.1. E_i and F_i on irreducible objects. We would like to understand the structure of E_iL , F_iL , where L is a simple object in C. Here we have the following result due to Chuang and Rouquier (who have introduced the notion of a categorical \mathfrak{sl}_2 -action).

Proposition 4.1. The following is true.

- (1) Suppose $E_iL \neq \{0\}$. Then the head (the maximal semisimple quotient) and the socle (the maximal semisimple sub) of E_iL are simple and isomorphic (let's denote this simple object by \tilde{e}_iL).
- (2) Let d be the maximal number such $E_i^d L \neq 0$. Then $e_i[L] = d[\tilde{e}_i L] + \sum_{L_0} [L_0]$, where the sum is taken over simples L_0 with $E_i^{d-1} L_0 = 0$.

The similar results also hold for F_iL (in particular, we get the simple/head socle of F_iL to be denoted by \tilde{f}_iL).

If $E_iL = 0$ (resp., $F_iL = 0$), then we set $\tilde{e}_iL = 0$ (resp., \tilde{f}_iL). So we get a collection of maps \tilde{e}_i , \tilde{f}_i : $Irr(\mathcal{C}) \to Irr(\mathcal{C}) \sqcup \{0\}$. A nice and very useful exercise is to check that if $\tilde{e}_iL \neq 0$, then $\tilde{f}_i\tilde{e}_iL = L$.

Proposition 4.1 implies, in particular, that the classes $[L], L \in Irr(\mathcal{C})$, form a so called *perfect basis* (as defined by Berenstein and Kazhdan). This implies that the maps \tilde{e}_i, \tilde{f}_i endow $Irr(\mathcal{C})$ with a crystal structure (a crystal is a combinatorial shadow of a Lie algebra action first constructed by Kashiwara using quantum groups).

4.2. **Irreducibility of** $\bigoplus_n [\mathbb{F}S_n \text{-mod}]$. Using Proposition 4.1, we will show that the \mathfrak{sl}_p -module $\bigoplus_n [\mathbb{F}S_n \text{-mod}]$ is irreducible (and hence it is the irreducible highest weight module of weight ω_0 , a.k.a., the basic representation of \mathfrak{sl}_p).

Theorem 4.2. The $\hat{\mathfrak{sl}}_p$ -module $V := \bigoplus_n [\mathbb{F}S_n \text{-mod}]$ is irreducible.

Proof. The module V is a quotient of \mathcal{F} and so is an integrable highest weight representation. Such a representation is irreducible if and only if it has a unique singular (=annihilated by all e_i) vector v. One such vector is $[\mathbb{C}] \in [\mathbb{F}S_0\text{-mod}]$. Moreover, the space V^0 of singular vectors does not contain any other vector of the form [L]. Indeed, $\sum_i e_i[L] = [EL]$, but $EL = \operatorname{Res}_{n-1}^n L$ is nonzero if $L \notin [\mathbb{F}S_0\text{-mod}]$. The following lemma combined with Proposition 4.1 implies that V^0 is spanned by vectors of the form $[L], L \in \operatorname{Irr}(\mathcal{C})$. This completes the proof.

Lemma 4.3. Let V be an \mathfrak{sl}_p -module and let \mathcal{B} be a basis with the following property. Let $d_i(b)$ denote the maximal number d such that $e_i^d b \neq 0$. For any $b \in \mathcal{B}$, $i \in \mathbb{Z}/p\mathbb{Z}$, we have that either $e_i b = 0$ or $e_i b = \alpha \tilde{e}_i b + \sum_{b_0} n_{b_0} b_0$, where $\alpha \neq 0$, if $n_{b_0} \neq 0$, then $e_i^{d_i(b)-1} b_0 = 0$, and $\tilde{e}_i b \in \mathcal{B}$. Assume further that $\tilde{e}_i b_1 = \tilde{e}_i b_2 \neq 0$ implies $b_1 = b_2$. Then the space of singular vectors V^0 is spanned by $V^0 \cap \mathcal{B}$.

Proof. Pick $v \in V^0$ and expand it in the basis \mathcal{B} , $v = \sum_{b \in \mathcal{B}'} n_b b$, where $n_b \neq 0$ for all $b \in \mathcal{B}'$. Let $d := \max\{d_i(b)|b \in \mathcal{B}'\}$. Let $\mathcal{B}'_i := \{b \in \mathcal{B}'|d_i(b) = d\}$. Assume d > 0. Then

$$0 = e_i^d v = \sum_{b \in \mathcal{B}_i'} m_b \tilde{e}_i^d b,$$

where all m_b 's are nonzero and all $\tilde{e}_i^d b$ are distinct. We get a contradiction that finishes the proof.