LECTURE 3: REPRESENTATION THEORY OF SLy(C) AND sl,(C)

IVAN LOSEV

INTRODUCTION

We proceed to studying the representation theory of algebraic groups and Lie algebras.
Algebraic groups are the groups defined inside GL,(F) by polynomial equations, such as
SL,(F), O,(F),Sp,(F). We are interested in their representations with polynomial matrix
coefficients. Often, this problem is reduced to studying representations of Lie algebras (some
sort of linearization). The connection between representations of algebraic groups and their
Lie algebras is very tight in characteristic 0 but is much more loose in characteristic p, as
we will see in the next lecture.

This lecture consists of two parts. First, we define algebraic groups, their Lie algebras,
representations of both and connections between those. In the second part we fully classify
the representations of SLy(C) and its Lie algebra sly(C).

1. ALGEBRAIC GROUPS AND THEIR LIE ALGEBRAS

1.1. Algebraic groups. Let F be an algebraically closed field. By a (linear) algebraic
group G' we mean a subgroup of GL,(F) = {A € Mat,(F)|det A # 0} defined by poly-
nomial equations’. Examples of algebraic groups include GL,(F) itself or SL,(F) = {A €
GL,(F)|det A = 1}. To get further examples, pick a non-degenerate symmetric or skew-
symmetric form B on F" and consider the subgroup G = {4 € GL,(F)|B(Au, Av) =
B(u,v),Yu,v € F*}. If J is the matrix of this form in some fixed basis, then G = {A €
GL,(F)|A*JA = J}. This group is denoted by O, (F) if B is symmetric, and by Sp,,(F) if B
is skew-symmetric (note that in this case n is even, because we assume B is non-degenerate).

By a polynomial function on an algebraic group G C GL,(F) we mean a polynomial in
matrix coefficients and det ™. The polynomial functions on G form an algebra to be denoted
by F[G]. By a homomorphism of algebraic groups G — G'(C GL,(F)), we mean a group
homomorphism whose matrix coefficients are polynomial functions. By an isomorphism of
algebraic groups, we mean a homomorphism that has an inverse that is also a homomorphism.
This allows to consider algebraic groups regardless their embeddings to GL,,(F) (there is also
an internal definition: a linear algebraic group is an affine algebraic variety that is a group
such that the group operations are morphisms of algebraic varieties).

We want to study representations G — GLy(F) that are homomorphisms of algebraic
groups (they are traditionally called rational). Examples are provided by the representation
of GG in F", its dual, their tensor products, subs and quotients of those.

1.2. Lie algebras. Let G C GL,(F) be an algebraic group. Consider g := TG, the tangent
space to G at 1 € G, this is a subspace in T} GL,,(F) = Mat, (F). It consists of the tangent
vectors to curves y(t) in G with v(0) = 1. When F = C we can take v to be a map from
a small interval in R containing 0. In general, we can take some “formal curve”, a formal
power series 1 + Ayt + Ast? + ... with A; € Mat,,(F) satisfying the defining equations of G.

I'We consider algebraic groups with the reduced scheme structure
1
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Such a curve exists for every A; € g because every algebraic group is a smooth algebraic
variety.

Let us compute the tangent spaces for the groups SL, (F), O,(F), Sp,,(F). In the case of
SL,(F), we get g = {x € Mat,(F)|trz = 0}, this space is usually denoted by sl,(F). For
Gp = O,(F) or Sp,(F), we get gp = {x € Mat,(F)|B(zu,v) + B(u,zv) = 0,Vu,v € F"}.
When B is orthogonal (resp., symplectic), this space is denoted by so,,(IF) (resp., sp,,(F)).

All these spaces have an interesting feature, they are closed with respect to the commutator
of matrices, [x,y] := xy — yx. This is a general phenomenon: if G is an algebraic group,
then g is closed with respect to [-,-]. The reason is that if v(t),n(s) are two curves with
y(t) =1+tx+...,n(s) =1+ sy + ..., then the group commutator v(¢)n(s)y(t)'n(s)™*
expands as 1 +ts[z,y| + ..., where “...” denotes the terms of order 3 and higher (note that
all of them include both ¢ and s).

The commutator on Mat,,(IF) is bilinear and satisfies the following two important identities

(1.1) [z,2] =0
(this implies that the commutator is skew-symmetric) and the Jacobi identity

(1.2) [, [y, 2] + [y, [z, 2]] + [z, [z, y]] = 0.

This motivates the following definition.

Definition 1.1. A Lie algebra is a vector space g equipped with a bilinear operation [-, -] :
g X g — g satisfying (1.1) and (1.2).

As we have seen, for any algebraic group G C GL,(F), the tangent space TG is a Lie
algebra.

The notions of a Lie algebra homomorphism, product of Lie algebras, subalgebras, quotient
algebras, ideals are introduced in a standard way.

1.3. Correspondence between representations. Now let ® : G — G’ be an algebraic
group homomorphism. The description of the bracket using the expansion of the commutator
in the group shows that the tangent map ¢ : g — ¢’ is a homomorphism of Lie algebras.

We write gl(V') for End(V') when view it as a Lie algebra. By a representation of an
arbitrary Lie algebra g one means a Lie algebra homomorphism g — gl(V'). We can also view
a representation as a bilinear map gxV — V, (z,v) — z-v satistying [z, y]-v = z-y-v—y-x-v.
In this case, we call V' a g-module.

Example 1.2. Consider the group GL;(FF) that coincides with the multiplicative group F*
of F. The corresponding Lie algebra is just IF with zero bracket (the one-dimensional abelian
Lie algebra). Consider the one-dimensional representations of F and of F*. In the former
case, a representation is given by multiplying by an arbitrary z € F. In the group case, a
representation is given by sending z € F* to f(z) € F* such that f(z2') = f(2)f(Z), f(1) =
1. A function f(z) is a polynomial on F* i.e., a Laurent polynomial. It has no nonzero
roots, so it has to be az",n € Z,a € F*. Clearly, « = 1. The corresponding representation
of F is given by the multiplication by n.

Example 1.3. Let G C GL,(F). Then g[,(F) carries a representation of G' given by g.z =
grg~!. The subalgebra g C gl,(F) is a subrepresentation. The representation of G in g
is called the adjoint representation. Note that g.[z,y] = [g.x, ¢.y], in other words, G acts
by automorphisms of the Lie algebra g. The corresponding representation of g (also called

adjoint and denoted by ad) is given by ad(y)x = [y, x].
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Recall that, for rational representations of G, we can take tensor products and dual repre-
sentations. This corresponds to taking tensor products and duals of Lie algebra representa-
tions. For example, if U,V are representations of GG, then the representation of G in U ® V'
is defined by g - (u®v) = (¢-u) ® (g-v). We plug y(t) = 1+ tx + ... for g, differentiate,
and set t = 0toget z- (u®v) = (z-u) ®v+u® (r-v). We take this formula for the
definition of a g-action on U ® V. For similar reasons, we define a g-module structure on
V* by (z-a)(v) .= —a(x - v). Finally, if U,V are g-modules, then we define a g-module
structure on Hom(U, V') by (z-¢)(u) = - p(u) — ¢(z - u). Using these constructions we can
produce new representations of Lie algebras from existing ones.

Now let us consider the following questions. Given a Lie algebra homomorphism ¢ : g — ¢’
(e.g., a representation), is there a homomorphism ® : G — G’, whose tangent map is ¢? In
this case we say that ® integrates . If so, is ® unique? Here is a place, where the answer
crucially depends on charF. In the next lecture, we will see that if charF > 0, then the
answers to both questions are “no” (we already have seen some of this in Example 1.2).

Proposition 1.4. Let char[F = 0 and let G be connected. Then the following is true.
(1) If © exists, then it is unique.
(2) If G is simply connected and g = [g, g] (the right had side denotes the linear span of
all elements of the form [x,y|, where x,y € g), then ® exists.

Proof/discussion. We will explain how (1) is proved (for F = C) and give a short discussion
of (2) (explaining what “connected” and “simply connected” mean for general IF).

Let F = C. We have a distinguished map v : R — G with y(t) = 1 + tz + ..., it is given
by v(t) = exp(tx). In fact, it is the only differentiable group homomorphism with given
tangent vector x. By this uniqueness, ®(exp(tx)) = exp(te(x)). The group G is connected,
so elements of the form exp(tx) generate G. This shows (1).

Now let us discuss (2) for F = C. Every algebraic group is also a complex Lie group, i.e.,
a group, which is a complex manifold, so that the group operations are complex analytic. A
general result from the theory of Lie groups (based on the existence/uniqueness of solutions
of ODE’s) shows that there is a complex Lie group homomorphism ¢ : G — G’ integrating
e. If g = [g, g], then ® is a morphism of algebraic varieties, see [OV, Section 3.4].

For an arbitrary linear algebraic group G over an algebraically closed field F, we say that
G is connected if it is irreducible as an algebraic variety. We say that G is simply connected
if there is no surjective non-bijective algebraic group homomorphism G — G. In this setting
(2) is proved using the structure theory of algebraic groups. O

Now let us explain why conditions in (2) are necessary producing counter-examples when
either of the two conditions in (2) fails. Consider G = SO(3), the special orthogonal group
SO(n), by definition, is O(n) N SL(n). Then g = s03(C) = sl3(C). The 2-dimensional
representation of sl (C) given by the natural inclusion sly(C) C gl,(C) does not integrate to
SO3(C).

On the other hand, one can consider G = C, the additive group of C. The only one
dimensional representation that integrates to a rational representation of GG is the zero one.

Remark 1.5. Let charF = 0. Let V.V’ be two representations of G and ¢ : V. — V' a
homomorphism of representations of g. Then ¢ is a homomorphism of representations of
G provided G is connected. This is proved similarly to part (1) of the previous proposition
provided F = C. In particular, if V' is completely reducible over g, then it is completely
reducible over G.
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2. REPRESENTATION THEORY OF sl3(C)

2.1. Universal enveloping algebras. Let g be a Lie algebra over a field F. As with finite
groups, we would like to have an associative algebra whose representation theory is the same
as that of g. Such an algebra is called the universal enveloping algebra, it is defined as

Ulg) :=T(g)/(e@y—y®@z—[z,y]|lt,y € g),

where we write T'(g) for the tensor algebra of g viewed as a vector space. There is a natural
Lie algebra homomorphism ¢ : g — U(g) that has the following universal property: if A is
an associative unital algebra and ¢ : g — A is a Lie algebra homomorphism, then there is
unique associative unital algebra homomorphism ¢ : U(g) — A with ¢ = tpo. In particular,
a U(g)-module is the same thing as a g-module.

The algebra U(g) is infinite dimensional if g # {0}. We can describe a basis in U(g) as
follows. Choose a basis x1, ..., 2, in g (we assume that g is finite dimensional, using infinite
indexing sets we can cover the case when g is infinite dimensional). It is easy to see that the
ordered monomials 229> ... z% € U(g) span U(g) as a vector space. The following claim
is known as the Poincare-Birkhoff-Witt (shortly, PBW) theorem.

Proposition 2.1. The elements 2923 .. 2 where dy, ..., d, € Zsq, form a basis in U(g).

For example, when g = sl,, we have a basis e*h‘f™ € Ul(g).

There is no easy multiplication rule for the basis elements. An easy general observation is
that (29 ... z).(29 .. zo) = 28t | gdnteny | where “...” means a linear combination
of monomials of total degree less then > 7 | (d; + ¢;).

Now let h C g is a Lie subalgebra. The universal property of U(h) and a Lie algebra
homomorphism h — g — U(g) give rise to an associative algebra homomorphism U(h) —
U(g). By the PBW theorem, this homomorphism is injective. So we can view U(h) as a

subalgebra in U(g).

2.2. Classification of irreducible representations of sly(C). First, we will need a lemma
from linear algebra.

Lemma 2.2. Let V be a finite dimensional vector space over an algebraically closed field F.
Let A, B € End(V) be such that [A, B]| = zB for z # 0. Further, for a € F, let V,, denote
the generalized eigenspace for A in V' with eigenvalue a. Then the following is true.
(1) B(V,) C Vy, for all a.
(2) If char(F) = 0, then B is nilpotent and there is an eigenvector v for A such that
Bv =0.

Proof. We have (A — (a + 2)id)(Bv) = B(A — aid)v that implies (1). If char(FF) = 0, then
all numbers a + nz,n € Z, are different. Since we have only finitely many eigenvalues for

Ain V, (2) follows. O

Let V' be a finite dimensional representation of g := sly(C). Taking A = h and B = e so
that [h, e] = 2e we get the following corollary.

Corollary 2.3. There is a nonzero vector v € V' such that hv = zv,ev = 0 for some z € C.

Now let us introduce Verma modules. Pick z € C. Let b C g be the subspace with basis
h, e, this is a subalgebra. Consider the b-module C, that is C as a vector space, h acts by
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z and e acts by 0. We view C, as a U(b)-module. As was mentioned before, we can view
U(b) as a subalgebra in U(g). Then set

A(z) := Ul(g) ®u) C. = U(g)/U(g) Spanc(h — z,€).

This is a left U(sly)-module. The reason why we need this is that, for any U(g)-module V,
we have

Homy (4 (A(2), V) = Homy ) (U(g) ®ue) C., V) = Homy ) (C., V) =
= {v € V|hv = zv,ev = 0}.

So if V' is irreducible and there is v € Vv # 0 with hv = zv, ev = 0, then there is a nonzero
homomorphism A(z) — V and hence V is a quotient of A(z). So we need to understand
the structure of A(z).

As a right U(b)-module, U(g) has basis f",n € Zso. It follows that A(z) has basis f"v,,
where v, is the image of 1 € U(g) in A(z). The action of f,h,e on this basis is given as
follows

(2.1)

(22) = Bfe=(z-20)fM, efe. = (2 -0t Dnf" e
The first equality is clear, the second is easy and the last one follows from the identity
(2.3) ef = "N (h+1—n)+ fre.

Lemma 2.4. The module A(z) is irreducible if and only if z & Z=o. If z € Z=o, then A(z)
has a unique proper submodule and the quotient by this submodule is finite dimensional.

Proof. Let U be a submodule of A(z). Since A(z) splits into the direct sum of eigenspaces
for h, so does U. So U = Span(f"v,|n > m) for some m > 0. From the third equation in
(2.2), we conclude that z =m — 1. All claims of the lemma follow easily from here. O

Remark 2.5. Note that the kernel A(n) — L(n) is A(—2 —n).

Proposition 2.6. There is a bijection Zso — Irr i, (sl2) (the set of finite dimensional irre-
ducible sly-modules). It sends n € Zq to the proper quotient L(n) of A(n). There is a basis
Ug, U1, - . ., Up 10 L(n), where the action of e, h, f is given by

(2.4) fui = (n—duipy, hu; = (n — 2i)u;, eu; = iu;_.

Proof. We already established the existence of L(n) with required properties. Clearly, these
modules are pairwise non-isomorphic. Now apply (2.1) to V' € Irry,(sly) and z found in
Lemma 2.3. We see that V' is a quotient of A(z). By Lemma 2.4, z € Zso and V = L(z).

We set u; := {f;vn. Clearly, (2.4) is satisfied. O

2.3. Complete reducibility. Consider an element C := ef + fe+h?/2 =2fe+h?/2+h €
Ul(g) (the Casimir element). It is straightforward to check that it is central in U(g). So C
acts by scalar on every irreducible finite dimensional module. To determine this scalar for
L(n) compute Cv, = (h?/2+ h)v, = (n*/2 4 n)v,. In particular, we see that these scalars
distinguish the irreducible modules L(n).

Lemma 2.7. Any finite dimensional sla-module V' is completely reducible.

Proof. Let us decompose V into the direct sum of generalized eigenspaces for C. We may
assume that only one eigenvalue occurs, say n?/2 + n. It remains to show that L(n) has no
self-extensions. Indeed, suppose we have an exact sequence 0 — Vi — V — Vo — 0 with
Vi = L(n) that does not split. Pick a vector v}, & V; that lies in the generalized eigenspace
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for h with eigenvalue n. We see that (h—n)v lies in the eigenspace for h in V' with eigenvalue
n. Note that &(n + 2) are not eigenvalues of h in V. Therefore ev = f"*'v = 0. By (2.3)
applied to n + 1 rather than to n, f*(h — n)v = 0. Therefore (h — n)v = 0. So we get a
homomorphism A(n) — V mapping v, to vj. It must factor through L(n) — V. It follows
that our exact sequence splits. ([l

2.4. Representations of SLy(C). We have the following classification result.

Proposition 2.8. Fvery rational representation of SLy(C) is completely reducible. For every
n € Zso, there is a unique (up to isomorphism) representation L(n) of dimension n + 1.

Proof. The first claim follows from Remark 1.5. To prove the second one, it only remains
to check that every sly(C)-module L(n) integrates to SLy(C). Consider the SLy(C)-module
S™(C?). Its basis is 2, " 1y, ..., 4", where z,y is a natural basis of C2. The eigenvalues of
h on the corresponding sl (C)-module are n,n — 2,..., —n. It follows that S"C? = L(n) as
an sly(C)-module, and so L(n) indeed integrates to SLy(C). O
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