
LECTURE 5: SEMISIMPLE LIE ALGEBRAS OVER C

IVAN LOSEV

Introduction

In this lecture I will explain the classification of finite dimensional semisimple Lie alge-
bras over C. Semisimple Lie algebras are defined similarly to semisimple finite dimensional
associative algebras but are far more interesting and rich. The classification reduces to that
of simple Lie algebras (i.e., Lie algebras with non-zero bracket and no proper ideals). The
classification (initially due to Cartan and Killing) is basically in three steps.

1) Using the structure theory of simple Lie algebras, produce a combinatorial datum, the
root system.

2) Study root systems combinatorially arriving at equivalent data (Cartan matrix/ Dynkin
diagram).

3) Given a Cartan matrix, produce a simple Lie algebra by generators and relations.
In this lecture, we will cover the first two steps. The third step will be carried in Lecture

6.

1. Semisimple Lie algebras

Our base field is C (we could use an arbitrary algebraically closed field of characteristic
0).

1.1. Criteria for semisimplicity. We are going to define the notion of a semisimple Lie
algebra and give some criteria for semisimplicity. This turns out to be very similar to the
case of semisimple associative algebras (although the proofs are much harder).

Let g be a finite dimensional Lie algebra.

Definition 1.1. We say that g is simple, if g has no proper ideals and dim g > 1 (so we
exclude the one-dimensional abelian Lie algebra). We say that g is semisimple if it is the
direct sum of simple algebras.

Any semisimple algebra g is the Lie algebra of an algebraic group, we can take the au-
tomorphism group Aut(g). The connected component of 1 is denoted by Ad(g), it should
be viewed as the group of “inner” automorphisms of g. One can show that the algebra g is
simple if and only if Ad(g) is simple as an abstract group.

We define the Killing form on a finite dimensional Lie algebra g by (x, y) = tr(ad(x) ad(y)),
this is a symmetric bilinear form. It is invariant in the sense that

(1.1) ([x, y], z) + (y, [x, z]) = 0

(equivalently, (·, ·) is annihilated by the representation of g in the space S2(g∗)). If g is a
Lie algebra of an algebraic group (or complex Lie group) G, then (·, ·) is G-invariant in the
usual sense (g · y, g · z) = (y, z) (just differentiate the latter equality to get (1.1)).

Theorem 1.2. The following conditions are equivalent:

(1) g is semisimple.
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(2) (·, ·) is non-degenerate.
(3) Any finite dimensional representation of g is completely reducible.

We also have the notion of the radical of g (=the maximal solvable ideal). The algebra g
is semisimple if and only if the radical is zero.

(2) gives a practical way to check semisimplicity, for example, sln(C), son(C) (for n > 2)
and spn(C) are semisimple, this is left as an exercise.

1.2. Cartan subalgebras. Let g be a semisimple Lie algebra. We say that an element in g
is semisimple (resp., nilpotent) if it acts by a semisimple (resp., nilpotent) operator in some
faithful finite dimensional representation. Then it acts by a semisimple (resp., nilpotent)
operator in any finite dimensional representation.

Proposition 1.3. The following is true:

(1) A Zariski generic element x ∈ g is semisimple.
(2) The centralizer zg(x) := {y ∈ g|[x, y] = 0} is an abelian subalgebra in g consisting of

semisimple elements. This centralizer is called a Cartan subalgebra.
(3) Any two Cartan subalgebras are conjugate by an element of Ad(g).

For g = sln(C), we take x with all distinct eigenvalues. Any Cartan subalgebra is the
subalgebra of all elements diagonal in some basis. In the definition of g = son(C), we
use the form (u, v) =

∑n
i=1 un+1−ivi so that son(C) consists of all matrices that are skew-

symmetric with respect to the main antidiagonal. We again take x with all distinct eigen-
values. For a Cartan subalgebra, we can take the subalgebra of all diagonal matrices con-
tained in son(C), these matrices have the form (x1, . . . , xm,−xm, . . . ,−x1) if n = 2m and
(x1, . . . , xm, 0,−xm, . . . ,−x1) if n = 2m+ 1. The case g = sp2m(C) is treated similarly – we
take the form ω(x, y) =

∑m
i=1(xiy2n+1−i − x2n+1−iyi).

1.3. Root systems. Let h denote a Cartan subalgebra. For α ∈ h∗, we set gα := {x ∈
g|[h, x] = α(h)x, ∀h ∈ h}. The set of all α ∈ h∗ \ {0} such that gα ̸= {0} is called the root
system of g. We will write ∆ (or ∆(g)) for the root system so that g = h⊕

⊕
α∈∆ gα. Note

that [gα, gβ] ⊂ gα+β. Note also that (·, ·) restricts to a perfect pairing gα×g−α → C (indeed,
gα is orthogonal to any gβ with α + β ̸= 0) and to a non-degenerate form on h. So we have
a non-degenerate symmetric form on h∗ also denoted by (·, ·).

We have the following properties of the subspaces gα. (1)-(6) are obtained using the
representation theory of sl2(C).

Proposition 1.4. We have the following properties of gα’s and ∆.

(1) Let e ∈ gα and f ∈ g−α be such that (e, f) ̸= 0. Then we can rescale f in such a
way that h := [e, f ] (that is an element of h) satisfies α(h) = 2. We have [h, e] =

2e, [h, f ] = −2f . In other words, the map sl2 → g given by

(
0 1
0 0

)
7→ e,

(
0 0
1 0

)
7→

f,

(
1 0
0 −1

)
7→ h is a Lie algebra homomorphism.

(2) dim gα = 1 for all α ∈ ∆. So we have elements eα ∈ gα, f ∈ g−α, hα ∈ h as in (1).
Note that hα is uniquely determined.

(3) β(hα) ∈ Z for any α, β ∈ ∆.
(4) If α ∈ ∆, then 2α ̸∈ ∆.
(5) For β ∈ ∆, define a linear map sβ : h∗ → h∗ by λ 7→ λ− λ(hβ)β. The map sβ maps

∆ to itself.
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(6) Let α+ β ̸= 0. If β+ kα, β+ ℓα ∈ ∆, then β+ iα ∈ ∆ for any integer i between k, ℓ.
(7) ∆ spans h∗. Moreover, let hR denotes the R-span of ∆. Then the restriction of (·, ·)

to hR is positive definite.
(8) Under the identification of h∗ and h by means of (·, ·), we get hα = 2α/(α, α) (we’ll

use notation α∨ for the right hand side).

Example 1.5. Let g = sln. Let ϵi denote the linear function on h taking the entry (i, i) so
that

∑n
i=1 ϵi = 0. Then the root system ∆ consists of the elements ϵi − ϵj, i ̸= j. The root

subspace gα for α = ϵi − ϵj is spanned by the unit matrix Eij. The root system ∆ is called
the root system of type An−1.

Note that, for x ∈ h, we have (x, x) =
∑

α∈∆ α(x)2 = 2
∑

i<j(xi−xj)
2 = 2(n−1)

∑n
i=1 x

2
i −

4
∑

i<j xixj. Since
∑n

i=1 xi = 0, we arrive at (x, x) = 2(n+ 1)
∑n

i=1 x
2
i .

Example 1.6. Let g = so2n+1. Then h∗ has a basis of functions ϵi, i = 1, . . . , n defined as in
the previous example. The root system ∆ consists of the elements ±ϵi ± ϵj, i ̸= j,±ϵi. This
is the root system of type Bn.

Example 1.7. For g = sp2n, the root system ∆ consists of ±ϵi ± ϵj, i ̸= j,±2ϵi (type Cn).

Example 1.8. For g = so2n, the root system ∆ consists of ±ϵi ± ϵj, i ̸= j, (type Dn).

In the last three examples, the form (x, x) on h is proportional to
∑n

i=1 x
2
i .

1.4. Irreducible root systems. We say that ∆ is irreducible if there are no proper sub-
spaces ∆1,∆2 ⊂ ∆ such that ∆ = ∆1 ∪∆2 and (α1, α2) = 0 for αi ∈ ∆i.

Lemma 1.9. The algebra g is simple if and only if ∆ is irreducible.

Example 1.10. The algebras sln, so2n+1, sp2n are simple for n > 1. The algebra so2n is
simple if and only if n > 2. For n = 2, the root system ∆ equals {±ϵ1± ϵ2} and we can take
∆1 = {±(ϵ1 − ϵ2)} and ∆2 = {±(ϵ1 + ϵ2)}. And, indeed, we have so4 ∼= sl2 × sl2.

2. Classification of root systems

2.1. Abstract root systems. Let E be a finite dimensional Euclidian space and ∆ ⊂
E \ {0} be a finite collection of elements. For α ∈ ∆, we write α∨ for 2α

(α,α)
. Suppose that

the following is true

(R1) (α∨, β) is an integer for any α, β ∈ ∆.
(R2) Define an automorphism sβ of E given by sβ(v) = v − (β∨, v)β. This automorphism

preserves ∆.
(R3) ∆ spans E.

Note that sα(α) = −α and so ∆ is closed under multiplication by −1.
We say that ∆ is reduced if α ∈ ∆ implies 2α ̸∈ ∆. We see that ∆(g) is a reduced root

system in E = h∗R. Similarly to Section 1.4, we can speak about irreducible root systems.
We say that two root systems ∆ ⊂ E,∆′ ⊂ E ′ are isomorphic if there is a linear isomor-

phism φ : E → E ′ such that φ(∆) = ∆′ and (α∨, β) = (φ(α)∨, φ(β)),∀α, β ∈ ∆.

2.2. Weyl group and Weyl chambers. Note that sβ is the reflection about the hyperplane
β⊥ ⊂ E. We consider the subgroup W ⊂ O(E) generated by the reflections sβ. It preserves
∆. Since ∆ is finite and spans E, we see that W is finite. It is called the Weyl group of ∆.
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Example 2.1. Let ∆ be the root system of type An. We can take (x, x) =
∑n+1

i=1 x2
i to be

the scalar product on E. Let β = ϵi − ϵj. Then β∨ = ϵi − ϵj and (β∨, x) = xi − xj, so the

reflection sβ is given by x 7→ x− (xi−xj)(ϵi− ϵj), where x =
∑n+1

i=1 xiϵi. So it just swaps the
ith and jth coordinates of x. It follows that the Weyl group is the symmetric group Sn+1.
In types Bn, Cn, we get the group Snn (Z/2Z)n, where the elements of Sn permute the basis
vectors ϵ1, . . . , ϵn ∈ E and the elements of (Z/2Z)n switch the signs of the basis vectors. In
type Dn, the group W (Dn) is the index two normal subgroup of Sn ×Z/2Z consisting of all
elements that switch an even number of signs.

The hyperplanes β⊥ split E into the union of regions called Weyl chambers. The following
proposition describes the properties of the chambers.

Proposition 2.2. The following is true.

(1) The group W permutes the Weyl chambers simply transitively.
(2) For each Weyl chamber C, there are n roots α1, . . . , αn such that C = {v ∈ E|(αi, v) >

0, i = 1, . . . , n}.
(3) C is a fundamental domain for W meaning that for each v ∈ E, there is a unique

u ∈ C with v ∈ Wu.
(4) The reflections sα1 , . . . , sαn (a.k.a. simple reflections) generate the Weyl group.

Example 2.3. Consider the root system of type An. The hyperplanes β⊥ are xi = xj.
So we have (n + 1)! Weyl chambers, they are specified by an ordering of x1, . . . , xn+1. An
example of a Weyl chamber is given by C = {(x1, . . . , xn+1)|x1 > x2 > . . . > xn+1}. The
corresponding simple reflections are the simple transpositions (i, i + 1), i = 1, . . . , n. They
clearly generate Sn.

In types Bn, Cn, we can take C = {(x1, . . . , xn)|x1 > x2 > . . . > xn > 0}. In type Dn, we
can take C = {(x1, . . . , xn)|x1 > . . . > xn > −xn−1}.

2.3. Simple roots, Cartan matrix and Dynkin diagram. By a system of simple roots,
we mean a subset of the form α1, . . . , αn for some Weyl chamber C, see (2) of Proposition
2.2. Note that W acts simply transitively on the set of systems of simple roots. So it does
not matter which system we pick.

Proposition 2.4. Let α1, . . . , αn be a system of simple roots. Then

(1) α1, . . . , αn form a basis in E.
(2) For any β ∈ ∆, either β =

∑n
i=1 niαi with all ni > 0 (positive root), or β =

∑n
i=1 niαi

with all ni 6 0 (negative root).

Example 2.5. For the chambers chosen in Example 2.3, we have the following systems of
simple roots:

(An) αi := ϵi − ϵi+1, i = 1, . . . , n.
(Bn) αi := ϵi − ϵi+1, i = 1, . . . , n− 1, αn := ϵn.
(Cn) αi := ϵi − ϵi+1, i = 1, . . . , n− 1, αn := 2ϵn.
(Dn) αi := ϵi − ϵi+1, i = 1, . . . , n− 1, αn := ϵn−1 + ϵn.

We can encode a simple root system by the Cartan matrix, this is an n × n-matrix with
entries nij = α∨

i (αj). This matrix is defined up to a conjugation with a monomial matrix
(corresponding to re-ordering α1, . . . , αn). We have the following important result.

Proposition 2.6. Let ∆,∆′ be two reduced root systems with the same Cartan matrix. Then
∆,∆′ are isomorphic.
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We can depict Cartan matrices (or simple root systems) getting so called Dynkin diagrams.

Namely, the simple roots are nods. We draw nijnji =
4(αi,αj)

2

(αi,αi)(αj ,αj)
un-oriented edges between

two nodes. We orient them by putting an arrow (that also can be viewed as an inequality
sign) from the longer root to a shorter root. Note that, since nijnji < 4, we can recover the
lengthes of roots from that. The Dynkin diagrams for the root systems An-Dn are shown in
Picture 1.

2.4. Classification of Cartan matrices. By an abstract Cartan matrix we mean a square
matrix A = (aij)

n
i,j=1 such that

(1) aii = 2,
(2) aij 6 0 for i ̸= j,
(3) aij = 0 if and only if aji = 0.

We say that A is irreducible if we cannot partition {1, 2, . . . , n} into I ⊔ J such that aij =
0, i ∈ I, j ∈ J . We say that A is symmetrizable if there is a diagonal matrix D with positive
entries and a symmetric matrix G such that A = DG. Note that if A is irreducible, then D
is defined up to a positive scalar factor. We say that A is positive definite if so is S.

The matrix A(∆) is symmetrizable, we can take D = diag(2/(αi, αi))
n
i=1, then S is the

Gram matrix of the basis αi. So A is positive definite.
One can classify the irreducible symmetrizable positive definite Cartan matrices. Be-

sides the matrices/ Dynkin diagrams An-Dn, there are just five more exceptional diagrams,
E6, E7, E8, F4, G2, see Picture 2.

One can explicitly produce the root systems corresponding to these diagrams. We are
not going to do that. Instead, we will produce simple Lie algebras with these Dynkin
diagrams. This will complete the classification of simple Lie algebras (over C or over general
algebraically closed fields of characteristic 0).


