
LECTURE 6: KAC-MOODY ALGEBRAS, REDUCTIVE GROUPS, AND
REPRESENTATIONS

IVAN LOSEV

Introduction

We start by introducing Kac-Moody algebras and completing the classification of finite
dimensional semisimple Lie algebras.

We then discuss the classification of finite dimensional representations of semisimple Lie
algebras (and, more generally, integrable highest weight representations of Kac-Moody alge-
bras).

We finish by discussing the structure and representation theory of reductive algebraic
groups.

1. Generators and relations. Kac-Moody algebras

1.1. Relations in simple Lie algebras. Let g be a simple Lie algebra, h ⊂ g a Cartan sub-
algebra, α1, . . . , αn a simple root system. We write ei, hi, fi for eαi

, hαi
, fαi

. Let A = (aij)
n
i,j=1

be the Cartan matrix, where, recall, aij = αj(hi). Set n :=
⊕

α>0 gα, n
− :=

⊕
α<0 gα, these

are Lie subalgebras of g because [gα, gβ] ⊂ gα+β. We have g = n−⊕h⊕n+ (as vector spaces)
because every root is either positive or negative.

Lemma 1.1. The elements ei (resp., fi) generate n (resp., n−). In particular, ei, hi, fi, i =
1, . . . , n, generate g. Further, we have the following relations (a.k.a. Serre relations):

(1) [hi, hj] = 0.
(2) hi = [ei, fi], [ei, fj] = 0 for i ̸= j.
(3) [hi, ej] = aijej, [hi, fj] = −aijfj.
(4) ad(ei)

1−aijej = 0, ad(fi)
1−aijfj = 0, i ̸= j.

Example 1.2. Let g = sln. Then n (resp., n−) is the subalgebra of all strictly upper (resp.,
lower) triangular matrices. We have hi := Ei,i − Ei+1,i+1, ei = Ei,i+1, fi = Ei+1,i. We have
[Eij, Ejk] = Eik if i ̸= k. Lemma 1.1 basically follows from this identity.

Proof. Let us check that the elements ei generate n (the claim about fi’s and n− is analogous).
Assume the contrary: there is α > 0 such that gα does not lie in the subalgebra n0 generated
by the ei’s. We have α =

∑n
i=1miαi with mi > 0. We may assume that

∑n
i=1 mi is minimal

possible such that gα ̸⊂ n0. Since all mj > 0 and 0 < (α, α) =
∑

j mj(α, αj), we see that

there is j with α(hj) =
2(α,αj)

(αj ,αj)
> 0. The elements α and sj(α) = α − α(hj)αj are roots. (6)

of Proposition 1.4 of Lecture 5 implies that α − αj is a root. By the inductive assumption,
gα−αj

⊂ n0. Consider the sl2-module
∑

z∈Z gα+zαj
. By the representation theory of sl2, we

see that [ej, gα−αj
] = gα, and we are done.

Let us check the relations. (1) is obvious. The first equality in (2) is the definition of
hi. The second one follows from [ei, fj] ∈ gαi−αj

= 0 because αi − αj is neither positive nor
negative root. (3) follows from aij = αj(hi).
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Let us prove that ad(fi)
1−aijfj = 0. We know that

(1.1) [ei, fj] = 0, [hi, fj] = −aijfj.

Consider the sl2-subalgebra spanned by ei, hi, fi and its module
⊕

z∈Z g−αj+zαi
. Considering

fj as an element of this module and using (1.1) and the representation theory of sl2, we see
that ad(fi)

1−aijfj = 0. The other equality in (4) is proved similarly. �

1.2. Kac-Moody algebras. Now let A be an arbitrary symmetrizable irreducible Cartan
matrix. We can define the Lie algebra g(A) by generators hi, ei, fi and relations (1)-(4). This
is the Kac-Moody algebra (with Cartan matrix A).

Let n (resp., n−, h) be the subalgebra in g(A) generated by the elements ei (resp., fi, resp.,
hi). Then we have the following important result

Proposition 1.3. We have g(A) = n−⊕h⊕n (as vector spaces). Moreover, h1, . . . , hn form
a basis in h.

To simplify the notation let us write g for g(A). Consider the vector space h∨ with basis
α1, . . . , αn. This space comes with a pairing h∨ × h → C given by (αi, hj) → aij and with
a symmetric form defined by S (note that the pairing and the form are degenerate if and
only if detA = 0 – which is an interesting case, but it requires some extra care because the
elements αi cannot be viewed as functions on h).

Let Q+ (resp., Q) denote the sub-semigroup (resp., subgroup) in h∨ spanned by α1, . . . , αn.
We assign degrees αi, 0,−αi to ei, hi, fi. Since the relations in g are Q-homogeneous, we
see that n is Q+-graded and n− is −Q+-graded. For β ∈ Q+ ⊔ −Q+, let gβ denote the
corresponding graded component. We say that β is a root if gβ ̸= {0}. The notions of
positive and negative roots are introduced in an obvious way.

We still can define the bijections si : h∨ → h∨ as before (the simple reflections). The
subgroup of GL(h∨) generated by the elements si is called the Weyl group of g or of A. The
Weyl group elements map roots to roots preserving the dimensions of root spaces, this again
follows from the representation theory of sl2. Roots obtained from α1, . . . , αn by applying
Weyl group elements are called real, for a real root α we have dim gα = 1. The other roots
are called imaginary.

Lemma 1.4. If β is an imaginary root, then (β, β) 6 0.

1.3. Case of positive definite Cartan matrix. Now suppose that A is positive definite
(and irreducible).

Theorem 1.5. The algebra g(A) is finite dimensional and simple.

Sketch of proof. The Weyl group W is a subgroup in O(h∨) that preserves the lattice gen-
erated by α1, . . . , αn. Such a group is finite. By Lemma 1.4, every root is real. So the root
system of g is finite and all gα’s have dimension 1. So dim g(A) < ∞. Any ideal in g(A) can
be shown to intersect h which contradicts the irreducibility of A. �

When A is not positive definite, the algebra g(A) is not finite dimensional. A family of
examples will be described in the homework.

2. Finite dimensional representations

2.1. The case of finite dimensional algebras. Let g be a finite dimensional semisimple
Lie algebra over C and V be its finite dimensional module. Since h is commutative and
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consists of semisimple elements, we have the weight decomposition V =
⊕

ν∈h∗ Vν , where Vν

is the eigenspace for h with eigenvalue ν. If Vν ̸= {0}, we say that ν is a weight of V . The
number of ν(hi) is a weight for an sl2-module and so is integral. Set P := {µ ∈ h∗|µ(hi) ∈
Z,∀i}. We conclude that any weight ν is in P (and hence P is called the weight lattice).

On h∗ we introduce a partial order 6: ν ′ 6 ν if ν − ν ′ is the sum of positive roots. By a
highest weight of an irreducible module V , we mean a maximal weight λ (existing because
the set of weights is finite). Note that any v ∈ Vλ is annihilated by n.

Lemma 2.1. Let λ be a highest weight of V . Then

(1) λ(hi) > 0.

(2) Further, f
λ(hi)+1
i vλ = 0.

Proof. (1) follows from eiv = 0. (2) follows from the representation theory of sl2, compare
to the proof of Lemma 1.1. �

The elements λ ∈ h∗ satisfying (1) are called dominant. The set of dominant weights is
denoted by P+.

The following theorem generalizes the corresponding result for sl2.

Theorem 2.2. There is a bijection between Irrfin(g) and P+ that sends a module to its
(unique) highest weight.

The proof is similar to the sl2-case, see Lecture 3. Set b = h ⊕ n. Now for an arbitrary
λ ∈ h∗ we can form the one-dimensional b-module Cλ (h acts by λ and n acts by 0, compare
to Cz in the case g = sl2). So we can form the Verma module ∆(λ) := U(g) ⊗U(b) Cλ that
has the universal property:

Homg(∆(λ), V ) = {v ∈ Vλ|nv = 0}.
Let vλ denote the image of 1 ∈ U(g) in ∆(λ).

Lemma 2.3. The following is true:

(1) ∆(λ) =
⊕

ν6λ∆(λ)ν and dim∆(λ)ν < ∞.
(2) There is a unique simple quotient L(λ) of ∆(λ).
(3) Moreover, if v ∈ L(λ) is annihilated by n, then it is proportional to vλ.

Proof. By the PBW theorem, ∆(λ) has basis
∏

α>0 f
−nα
α vλ (for some fixed ordering of positive

roots). The weight of this basis vector is λ−
∑

α>0 nαα. This implies (1).
Note that any proper submodule of ∆(λ) is contained in

⊕
ν<λ ∆(λ)ν . This implies (2).

Let us prove (3). Assuming it is false, we can find v ∈ L(λ)ν with nv = 0. We have ν < λ
and hence the image of ∆(ν) in L(λ) is proper. Contradiction. �
Corollary 2.4. Any irreducible finite dimensional g-module has a single highest weight. Two
finite dimensional irreducible modules with the same highest weight are isomorphic.

To prove Theorem 2.2 it remains to prove the following proposition.

Proposition 2.5. If λ is dominant, then dimL(λ) < ∞.

Sketch of the proof. The proof is in several steps.
Step 1. Deduce that fi, ei act on L(λ) locally nilpotently (for ei this follows from the

weight considerations, while for fi one needs to use the second part of Lemma 2.1).
Step 2. Deduce that L(λ) is the sum of its finite dimensional sl2-modules for any sl2 =

Span(ei, hi, fi). So the action of this sl2 integrates to SL2(C).
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Step 3. By using the element

(
0 1
−1 0

)
∈ SL2(C), show that the set of weights of L(λ) is

closed under si.
Step 4. By Step 3, the set of weights is closed under the action of the Weyl group W . On

the other hand, any weight µ has the property that λ−µ is the sum of positive roots. From
here one can deduce that the set of weights is finite.

Step 5. Since the dimensions of all weight spaces are finite (this is so even in ∆(λ) by (1)
of Lemma 2.3), we see that dimL(λ) < ∞. �

2.2. Fundamental weights. For i = 1, . . . , n, define ωi ∈ h∗ by ωi(α
∨
j ) = δij. This elements

form bases in the group P and in the monoid P+.
The irreducible representations corresponding to fundamental weights are important be-

cause of the following lemma.

Lemma 2.6. Let λ, µ be dominant weights. Then L(λ+ µ) coincides with the submodule in
L(λ)⊗ L(µ) generated by vλ ⊗ vµ.

Proof. First of all, note that a g-submodule in any g-module generated by v ∈ Vν with
nv = 0 is isomorphic to L(ν). Indeed, it is a finite dimensional image of a homomorphism
∆(ν) → V . Any finite dimensional image of ∆(ν) is L(ν) by (2) of Lemma 2.3 and the
complete reducibility of finite dimensional modules.

The vector vλ ⊗ vµ has weight λ+ µ and is annihilated by n. Our claim follows. �

Example 2.7. Let g = sln+1. We have ωi =
∑i

j=1 ϵj and L(ωi) = ΛiCn+1. Indeed, let

v1, . . . , vn+1 be a natural basis in Cn+1. The vector v1 ∧ v2 ∧ . . . ∧ vi has weight ωi and is
annihilated by n. It is not difficult to see that ωi is the only dominant weight in ΛiCn+1 so
the latter is irreducible.

Example 2.8. Let g = so2n+1. We have ωi =
∑i

j=1 ϵj for i < n, and ωn = 1
2

∑n
j=1 ϵj. One

can show that
∧i C2n+1 = L(ωi) for i < n. The irreducible representation L(ωn) (the spinor

representation) is not realized in this way.

Example 2.9. Let g = sp2n. We have ωi =
∑i

j=1 ϵi, and L(ωi) is a direct summand in

ΛiC2n generated by v1 ∧ v2 ∧ . . . ∧ vi for any i = 1, . . . , n.

Example 2.10. Let g = so2n. We have ωi =
∑i

j=1 ϵi for i = 1, . . . , n − 2, ωn−1 = ωn−2 +
1
2
(ϵn−1 − ϵn), ωn = ωn−2 + 1

2
(ϵn−1 + ϵn). We have L(ωi) =

∧iC2n for i 6 n − 2. The
representations L(ωn−1), L(ωn) are the so called half-spinor representations.

2.3. Integrable highest weight representations of Kac-Moody algebras. Now let A
be a symmetrizable Cartan matrix and g = g(A) be the corresponding Kac-Moody algebra.
Recall the space h∨ spanned by the simple roots α1, . . . , αn. We are interested in studying
highest weight representations of g, i.e., representations V equipped with a grading V =⊕

µ∈−Q+ V (µ), where V (µ) is a finite dimensional space, where h acts diagonalizably and

eiV (µ) ⊂ V (µ + αi), fiV (µ) = V (µ − αi). Note that V decomposes into the sum of weight
spaces for h but this decomposition does not need to agree with V =

⊕
µ∈−Q+ V (µ) when A

is degenerate. If V (0) is a single weight space, then the weight of h in it, an element of h∗,
is called the highest weight of V .

We say that a weight g-module V is integrable if ei, fi act on V locally nilpotently (so that
V integrates to the corresponding infinite dimensional group).
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Theorem 2.11. Any integrable highest weight g-module is completely reducible. The irre-
ducibles are classified by dominant weights (via taking the highest weight).

3. Reductive algebraic groups

3.1. Classification. An algebraic group is called unipotent if it is represented by unipotent
operators in any rational representation (equivalently, in some faithful rational representa-
tion). A typical example is the group of uni-triangular matrices.

We say that an algebraic group is reductive if it does not have normal unipotent subgroups.
For example, an algebraic tori (or just tori) (C×)n are reductive. Those are the only connected
commutative reductive groups.

We say that an algebraic group is semisimple if its Lie algebra is semisimple. The following
theorems classifies (connected) semisimple and reductive algebraic groups.

Theorem 3.1. The following is true.

(1) For any semisimple Lie algebra g, there is a unique connected and simply connected
algebraic group with this Lie algebra.

(2) Let G be a connected semisimple algebraic group. Then there is a simply connected
semisimple group G̃ and a finite central subgroup Z ⊂ G̃ such that G = G̃/Z.

(3) A connected algebraic group G is reductive if and only if there is a semisimple al-
gebraic group G′, a torus T and a finite central subgroup Z ⊂ G′ × T such that
G = (T × G′)/Z. For T we can take the connected component of 1 in the center
Z(G). The Lie algebra g′ coincides with [g, g].

So basically, to understand connected reductive algebraic groups, we need to compute the
centers of simply connected semisimple groups (that are necessarily finite).

Example 3.2. The groups SLn(C) and Sp2n(C) are simply connected. The centers consist
of scalar matrices and so have order n for SLn(C) and 2 for Sp2n(C). The group SOn(C) is
not simply connected, it has a 2 : 1 cover, called the spinor group Spinn(C).

3.2. Structure theory. Let us discuss important structural features of a (connected) re-
ductive algebraic group G. By a Borel subgroup, one means a maximal (with respect to
inclusion) connected solvable subgroup B. An important result is that all such subgroups
are G-conjugate. Moreover, B coincides with its normalizer. The Lie algebra of B, a subal-
gebra in g, is called a Borel subalgebra. For example, b = h⊕ n ⊂ g is a Borel subalgebra.
The homogeneous space G/B is a smooth projective variety known as the flag variety for G.
This terminology is motivated by the following example.

Example 3.3. Let G = GLn(C). One can show that every connected solvable subgroup
fixes a complete flag of subspaces in Cn. So the Borel subgroups are precisely the subgroups
of upper-triangular matrices with respect to some basis. And G/B is the flag variety.

Another important class of subgroups in G are maximal tori (with respect to inclusion).
Note that any torus in G is contained in a Borel subgroup.

Theorem 3.4. The following is true:

(1) Any two maximal tori in a Borel subgroup B are conjugate. Hence any two maximal
tori in G are conjugate.

(2) If G is semisimple, then the Lie algebra of a maximal torus is a Cartan subalgebra.
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(3) Let T be a maximal torus and h ⊂ g be its Lie subalgebra. Note that since T is abelian
its adjoint action on h is trivial. So NG(T )/T acts on h. This action is faithful and
the image coincides with W .

(4) T contains the center of G.

Example 3.5. Consider G = SLn(C). Any torus acts by diagonal matrices in some basis.
So any maximal torus consists of all diagonal matrices in some basis. The normalizer NG(T )
is the subgroup of all monomial matrices, i.e., non-degenerate matrices that have exactly
one nonzero entry in every row. We see that NG(T )/T ∼= Sn. The action of NG(T )/T on h
is by permuting the entries.


