
LECTURE 7: CATEGORY O AND REPRESENTATIONS OF
ALGEBRAIC GROUPS

IVAN LOSEV

Introduction

We continue our study of the representation theory of a finite dimensional semisimple Lie
algebra g by introducing and studying the category O of g-modules that has appeared in
the seminal paper by Bernstein, Israel and Sergei Gelfand, [BGG]. We establish a block
decomposition for this category and use this to prove the Weyl character formula for finite
dimensional irreducible g-modules.

Then we proceed to studying the representations of reductive algebraic groups both in
zero and positive characteristic. Our main result is the classification of irreducible rational
representations.

1. Category O

1.1. Definition. By definition, the categoryO consists of all finitely generated U(g)-modules
M such that h acts on M diagonalizably and n acts locally nilpotently, meaning that for
each v ∈ M there is k ∈ Z>0 such that eγ1 . . . eγℓv = 0 for any ℓ > k and any positive roots
γ1, . . . , γℓ.

Lemma 1.1. ∆(λ) ∈ O.

Proof. ∆(λ) is generated by a single vector, vλ. We have the weight decomposition ∆(λ) =⊕
ν6λ∆(λ)ν so h acts on ∆(λ) diagonalizably. Also eγ1 . . . eγk∆(λ)ν = 0 provided

∑
i γi >

λ− ν (where the order 6 is defined by ν ′ 6 ν if ν − ν ′ is the sum of positive roots). �
Lemma 1.2. The irreducible objects in O are precisely the irreducible quotients L(λ) of
∆(λ), λ ∈ h∗.

Proof. Any object M ∈ O has a vector v annihilated by n. Indeed, take any u ∈ M
and let v = eγ1 . . . eγku ̸= 0 with maximal possible k. It follows that there is a nonzero
homomorphism ∆(λ) → M for some λ ∈ h∗. Completing the proof is now an exercise. �

To get more examples of objects in O, we note that if M ∈ O and V is a finite dimensional
g-module, then V ⊗M ∈ O.

1.2. Structure of the center. In order to proceed further with our study of the category
O, we need to understand the structure of the center of U(g), let us denote this center by
Z. It was described by Harish-Chandra. Set ρ :=

∑
α>0 α/2, where the sum is taken over

all positive roots.

Theorem 1.3. We have an isomorphism z 7→ fz : Z
∼−→ C[h∗]W (the algebra of W -invariant

polynomials on h∗) with the property that z acts on ∆(λ) by fz(λ+ ρ).

We will sketch the proof below after providing an example.
1
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Example 1.4. Let g = sl2. Here h
∗ = C (with ϵ1 = 1). So the only positive root α equals 2

and ρ is 1. One can show that the Casimir element C = 2fe+ 1
2
h2 + h generates the center

of U(g). It acts on ∆(z) by 1
2
z2 + z = 1

2
((z + 1)2 − 1). The subalgebra C[h∗]W ⊂ C[h∗] is

C[x2] ⊂ C[x]. We can take fC(x) = 1
2
(x2 + 1). This actually proves the Harish-Chandra

theorem for g = sl2.

Sketch of proof of Theorem 1.3. Step 1. Let us construct a homomorphism Z ↪→ S(h) =
C[h∗]. Note that Z ⊂ U(g)0, the zero weight space for the adjoint action of h on U(g). Note
that U(g)n∩U(g)0 is a two-sided ideal in U(g)0 with U(g)0/(U(g)0∩U(g)n) = U(h)(= C[h∗]).
The homomorphism we need is Z ↪→ U(g)0 � C[h∗]. Denote the image of z by f̃z. By the

construction, z acts on ∆(λ) by f̃z(λ).

Step 2. We need to show that f̃z(λ + ρ) is W -invariant. This is a consequence of the
following fact about Verma modules: suppose that λ ∈ P and αi be such that m := λ(α∨

i ) >
0. Then ejf

m+1
i vλ = 0 for any j (for j ̸= i we use [ej, fi] = 0, ejvλ = 0 and for i = j we use the

representation theory of sl2). We get a nonzero homomorphism ∆(λ− (m+ 1)αi) → ∆(λ).

It follows that f̃z(λ) = f̃z(λ − (m + 1)αi). Note that λ − (m + 1)αi = si(λ + ρ) − ρ.

Therefore f̃z(λ) = f̃z(w(λ+ ρ)− ρ). The claim in the beginning of the step follows. We set

fz(λ) := f̃z(λ− ρ).
Step 3. Now let us show that z 7→ fz is injective. The algebra U(g) is filtered, U(g) =∪
m>0 U(g)6m, where U(g)6m has basis xd1

1 . . . xdn
n with d1+ . . .+ dn 6 m. This is an algebra

filtration meaning that U(g)6mU(g)6m′ ⊂ U(g)6m+m′
. So we can consider the associated

graded algebra grU(g) :=
⊕

m>0 U(g)6m/U(g)6m−1, where the multiplication is given by

(a + U(g)6m−1)(b + U(g)6k−1) := ab + U(g)6k+m−1. Recall that (xd1
1 . . . xdn

n )(xe1
1 . . . xen

n )
equals xd1+e1

1 . . . xdn+en
n plus lower degree terms. In other words, grU(g) = S(g). We note

that Z coincides with U(g)G. Since the G-module U(g) is completely reducible, we see that
grU(g)G = S(g)G. The right hand side is C[g∗]G ∼= C[g]G (here we use the identification of g
and g∗ induced by (·, ·)) and we have the restriction (from g to h) homomorphism C[g]G →
C[h]. This homomorphism is injective because Gh is Zariski dense in g (see Proposition 1.3
in Lecture 5). On the other hand, the associated graded of the homomorphism Z → C[h∗] =
C[h] coincides with the restriction homomorphism C[g]G → C[h]. So the homomorphism
z 7→ fz : Z → C[h∗] is injective.

Step 4. Note that Step 3 implies that the image of the restriction homomorphism C[g]G →
C[h] lies in C[h]W . This also can be checked directly using (3) of Theorem 3.4 in Lecture 6.

To show that Z ↪→ C[h∗]W is surjective, we need to check that C[g]G → C[h]W is surjective.
We will do this in the case when g = sln, where this is very explicit. In the general case one
needs to use some further structure theory of g and some Algebraic geometry.

For g = sln, the algebra C[h]Sn is generated by the power symmetric functions
∑n

i=1 ϵ
k
i ,

where k = 2, . . . , n. This function is the restriction of tr(xk) ∈ C[g]G. This shows that the
restriction homomorphism C[g]G → C[h]W is surjective and completes the proof. �

Corollary 1.5. An element z ∈ Z acts on L(λ) by fz(λ+ ρ).

1.3. Infinitesimal blocks. First of all, let us prove the following lemma.

Lemma 1.6. Any object of O has finite length (i.e., has finite composition series).

Proof. First of all, let us check that ∆(λ) has finite length. Set w · λ := w(λ + ρ) − ρ. If
L(µ) is a composition factor of ∆(λ), then fz(µ+ρ) = fz(λ+ρ) for any z ∈ Z. By Theorem
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1.3, µ = w · λ. So only finitely many different simples can occur in the composition series of
∆(λ). The multiplicity of L(µ) is bounded by dim∆(λ)µ. So ∆(λ) indeed has finite length.

Now we claim that every module in O has a finite filtration whose successive quotients
are quotients of Verma modules. Indeed, by above, M has a sub of required form. The
algebra U(g) is Noetherian. This is because S(g) is Noetherian, U(g) is Z>0-filtered, and
grU(g) = S(g). This establishes the claim in the beginning of the paragraph and completes
the proof of the lemma. �

For λ ∈ h∗, define Oλ as a full subcategory in O consisting of all modules M such that
every z ∈ Z acts on M with generalized eigenvalue fz(λ + ρ). Note that Oλ = Ow·λ, by
definition and L(w ·λ), w ∈ W, are precisely the irreducible objects in Oλ. In particular, the
number of simples equals |W/Wλ+ρ|, where Wλ+ρ is the stabilizer of λ+ ρ in W .

Proposition 1.7. Any M ∈ O splits as
⊕

λ∈h∗/W Mλ, where Mλ ∈ Oλ.

Proof. This is the decomposition into the generalized eigenspaces for Z (that exists because
M has finite length). �

The point of the previous proposition is that the study of O reduces to that of Oλ’s. These
subcategories are called the infinitesimal blocks.

1.4. Characters. Let M ∈ O. All weight spaces in the simples L(λ) are finite dimensional
(this is true even for ∆(λ)). Since M has finite length, we have dimMν < ∞ for all ν.
So we can consider the formal character chM =

∑
ν∈h∗ dimMνe

ν , where eν is ν viewed as
an element of the group algebra of h∗. The sum chM is finite if and only if M is finite
dimensional.

Example 1.8. Let us compute ch∆(λ). As we have seen in the proof of (1) of Lemma
2.3 in Lecture 6, we have a basis

∏
α>0 f

mα
α vλ,mα ∈ Z>0. The latter element has weight

λ−
∑

α>0mαα. It follows that

ch∆(λ) = eλ
∏
α>0

∞∑
i=0

e−iα = eλ
∏
α>0

(1− e−α)−1.

Using this example and Section 1.3, we are going to compute the characters of the finite
dimensional irreducible modules L(λ) (the Weyl character formula). For this we need a
notation. Set F (λ) :=

∑
w∈W det(w)ewλ (here we take the determinant of w in h).

Theorem 1.9. For λ ∈ P+, we have chL(λ) = F (λ+ ρ)/F (ρ).

Sketch of proof. First of all, we have the following formula:

(1.1) F (ρ) = eρ
∏
α>0

(1− e−α).

On the other hand, recall that each ∆(w ·λ) admits an epimorphism onto L(w ·λ) such that
the kernel is filtered with L(w′ · λ), where w′ · λ < w · λ. It follows, in particular, that

(1.2) chL(λ) =
∑
w∈W

nwch∆(w · λ),

where all nw ∈ Z and n1 = 1. Combining (1.1) with (1.2), we get

(1.3) F (ρ)chL(λ) =
∑
w∈W

nwe
w(λ+ρ).
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Also note that chL(λ) is W -invariant because W acts on the set of weights of L(λ) pre-
serving the dimensions of weight spaces. So w(F (ρ)chL(λ)) = det(w)F (ρ)chL(λ). So
nw = det(w)n1 = det(w). �

One can ask how to compute L(λ) for general λ ∈ h∗. This computation is, basically, in
three steps.

(1) To do the case when λ in integral and λ + ρ is regular (meaning that the stabilizer
of λ+ ρ in W is trivial). This is a very nontrivial problem. The answer is expressed
in terms of so called Kazhdan-Lusztig bases in the Hecke algebra of W to be covered
later in this class. Finding this answer (Kazhdan-Lusztig) and proving it (Brylinski-
Kashiwara and Beilinson-Bernstein) is one of the most significant achievements of
Representation theory of the second half of the 20th century.

(2) The case when λ is integral but λ + ρ is not regular is reduced to the previous case
by means of so called translation functors. This is relatively easy.

(3) The case when λ is not integral is reduced to the integral case for a smaller Weyl
group. This reduction, due to Soergel, is not so easy but is not nearly as hard as
Step 1.

2. Representation theory of reductive groups

2.1. Structure theory in arbitrary characteristic. Let G be a connected (i.e., irre-
ducible as an algebraic variety) reductive algebraic group over an algebraically closed field
F, T ⊂ B ⊂ G be a maximal torus and a Borel subgroup. The subgroups T and B were
introduced in Lecture 6 in the case of characteristic 0 field but the results there hold in
arbitrary characteristic (when we do not refer to Lie algebras). We can speak about simple
(resp., semisimple) groups as well: these are the connected reductive groups without any
(resp., solvable) connected normal subgroups.

For an algebraic group H, let X(H) denote the set Hom(H,F×) of group homomorphisms
(a.k.a. characters). The set X(H) carries a natural group structure.

Lemma 2.1. Let T ∼= (F×)n. Then X(T ) = Zn and all representations of T are completely
reducible.

Proof. This is a direct generalization (together with a proof) of the corresonding claims for
F×, see Example 1.2 in Lecture 3, Lemma 2.2 in Lecture 4. �

We can develop the theory of roots in arbitrary characteristic using the adjoint T -action
on g. We have the Weyl group W = NG(T )/T acting on R ⊗Z X(T ) and it behaves as in
characteristic 0. For each root α, we have the corresponding group homomorphism SL2 → G.

Example 2.2. For G = SLn(F), α = ϵi − ϵj, we consider SL2(F) ⊂ SLn(F) “located” in the
rows and columns i, j.

We can decompose B into the semidirect product T nU , where U is the maximal normal
unipotent subgroup. In the examples we consider (G = SLn(F), Sp2n(F), SOn(F) – for the
latter two groups we assume charF > 2 – for U we take the subgroup of all unitriangular

matrices in G). The group U is generated by the images of {
(
1 t
0 1

)
} ⊂ SL2(F) under all

homomorphisms associated to the positive roots (one can restrict to the simple roots). This
is easy to see for SLn(F) using Example 2.2 and can be checked by hand for other classical
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groups. The decomposition B = T n U yields an identification X(B) ∼= X(T ) because
X(U) = {1}.

Using this and emulating the classification theorem for simple Lie algebras in characteristic
0 one can prove the following result.

Theorem 2.3. The following is true.

(1) The simple simply connected algebraic groups are in bijection with the Dynkin dia-
grams An-G2. Any semisimple simply connected group is the direct product of simple
ones.

(2) Any semisimple algebraic group is the quotient of a simple one by a finite central
subgroup.

Recall that we say that G is semisimple if there are no etale covers G̃ → G, where G̃ is
an algebraic group.

2.2. Representation theory of algebraic groups. Here G is connected and reductive.
Let V be a rational representation of G. We have the weight decomposition V =

⊕
ν∈X(T ) Vν .

We say that λ ∈ X(T ) is dominant if λ(α∨) ∈ Z>0 for any positive root α. The definition of
a highest weight of an irreducible G-module V is given in the same way as for Lie algebras
in characteristic 0.

Theorem 2.4. The irreducible rational representations of a connected reductive group G are
in bijection with the dominant elements in X(T ) (an irreducible representation corresponds to
its unique highest weight). In characteristic 0, any rational representation of G is completely
reducible.

In characteristic 0, this can be deduced from the corresponding results about semisimple
Lie algebras combined with Lemma 2.1. Below we will explain what to do in characteristic
p.

Similarly to Problem 3 in Homework 2, we prove the following result.

Lemma 2.5. Let λ be a highest weight of an irreducible G-module V and v ∈ Vλ. Then
bvλ = λ(b)vλ for any b ∈ B.

The next step in the proof of Theorem 2.4 is to produce the Weyl module W (λ) that has
the universal property

HomG(W (λ), V ) = {v ∈ V |bv = λ(b)v,∀v ∈ V }.

We start by producing the dual Weyl module W∨(λ) with lowest weight λ∗−1, where we write
λ∗ for the highest weight of L(λ)∗ (in characteristic 0). This is done in the same way as in
the SL2-case: we take the line bundle O(λ∗) on G/B that is the homogeneous vector bundle
with fiber Fλ∗−1 over eB ∈ G/B. Then we set W∨(λ) := Γ(O(λ∗)) = {f ∈ F[G]|f(gb) =
λ∗(b)f(g)}. Then we set W (λ) = W∨(λ∗)∗. Similarly to the SL2-case, this module has the
required universal property.

Now we need to establish the following two facts: W (λ)λ = F and if W (λ)ν ̸= {0} implies
ν 6 λ. This will imply that there is a unique simple quotient L(λ) of W (λ) and complete
the proof of Theorem 2.4. Both claims above follow from the next theorem.

Theorem 2.6. We have chW (λ) = F (λ + ρ)/F (ρ). In other words, the character is inde-
pendent of the characteristic.
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Sketch of proof. Note that ifM is a finitely generated Z-module, then dimQ⊗ZM = χ(Fp⊗L
Z

M), where χ is the Euler characteristic. With some standard manipulations along these
lines, we conclude that

⊕∞
i=0 chH

i(G/B,O(λ∗)) is independent of the characteristic. But
H i(G/B,O(λ∗)) = 0 for i > 0, this is the Borel-Weil-Bott theorem (in characteristic p it
was proved by Kempf). �
2.3. Characters of simples. First, let us explain the general form of the Steinberg decom-
position. We say that a dominant weight λ is restricted if ⟨λ, α∨

i ⟩ < p for all i. So for any
dominant weight λ there is a unique p-adic expansion λ = λ0 + pλ1 + . . .+ pℓλℓ, where all λi

are restricted. The following theorem (due to Steinberg) reduces the computation of L(λ)
to that of L(λi)’s.

Theorem 2.7. Let λ0 be restricted and λ = λ0 + pµ. Then L(λ) ∼= L(λ0)⊗ Fr∗ L(µ).

The question of computation of the characters of L(λ) with restricted λ’s is wide open.
The answer is known (and complicated) when p is very large, [AJS] (there are actual bounds,
but they are huge, see [F]). For quite a long time, there was a conjecture on the multiplicities
of L(λ)’s in W (µ)’s when p > h, where h is the so called Coxeter number (it is equal to n
for SLn(F)). Recently, this conjecture was disproved by Williamson, [W]. The problem of
computing the multiplicities is wide open even on the level of conjectures.
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