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Introduction

We start by briefly explaining key results on the representation theory of semisimple Lie
algebras in large enough positive characteristic.

After that, we start a new topic: the complex representation theory of finite groups of
Lie type and Hecke algebras. Today we consider the most basic group: G := GLn(Fq). We
introduce the Hecke algebra as the endomorphism algebra of the G-module C[B \ G]. We
describe the basis in this algebra and some of the multiplication rules that allow to present
the Hecke algebra by generators and relations. Then we use the Tits deformation principle
to show that the Hecke algebra is isomorphic to CSn.

1. Representations of semisimple Lie algebras in positive characteristic

Let GF be a simple algebraic group over an algebraically closed field F of positive char-
acteristic and gF be its Lie algebra. In this section we assume that the characteristic of F
is large enough. This will guarantee that (·, ·) is non-degenerate, that gF is simple (by root
considerations), and several more subtle things. In a sentence, the structure theory of gF
will be the same as of g, while the representation theory will be crucially different.

1.1. Case of nilpotent p-character. Recall that any irreducible gF-module has the so
called p-character, an element of gF to be denoted by α. In this section, we assume that α
is nilpotent. As we will see below, the general case can be reduced to this one. Since p≫ 0,
the nilpotent GF-orbits in gF are in a natural bijection with the nilpotent orbits of G(= GC)
in g (this should be clear when g = sln, and is easy to show when g = son or sp2n). So we
can view α also as an element of g (defined up to G-conjugacy).

Consider an irreducible g-moduleM with p-character α. We still have the so called Harish-
Chandra center U(gF)

GF . As in characteristic 0, U(gF)
GF = F[h∗F]W . For λ ∈ h∗F let Uα,λ(gF)

denote the corresponding quotient of Uα(gF). One can show that if Uα,λ(gF) ̸= {0}, then
λ ∈ h∗Fp

.

Below we will consider the case when the stabilizer of λ + ρ in W is trivial (the regular
case). One reduces the general case to this one using translation functors. Consider the
variety B of all Borel subalgebras in g. This is nothing else but the flag variety G/B. Inside,
we have the closed (generally, singular) subvariety Bα of all subalgebras containing α.

Example 1.1. Let g = sln. Then B is the variety Fl of full flags, and Bα consists of all flags
{0} ( V1 ( V2 ( . . . ( Vn such that αVi ⊂ Vi−1 for all i (recall that α is nilpotent and so if
α preserves Vi, Vi−1, then it maps Vi to Vi−1).

Theorem 1.2. Let α be nilpotent, and λ be regular. Then | Irr(Uα,λ(g))| = dimH∗(Be).

Example 1.3. Let g = sl2. If α =

(
0 1
0 0

)
, then Be consists of one point, {0} ( imα ( C2.

We have (p+1)/2 points in h∗Fp
/{±1}, and (p+1)/2 irreducible Uα(g)-modules. Taking the
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scalar of action of C, we get a bijection between these two sets, as (partially) predicted by
Theorem 1.2.

If α = {0}, then Be = B and the homology has dimension 2. We have p irreducible U0(g)-
modules, L0(z), z = 0, . . . , p− 1. The eigenvalue of C on L0(z) is

1
2
((z +1)2 − 1). Regular λ

corresponds to z ̸= −1. We see that Irr(U0,λ(g)) = {L(λ), L(−2− λ)}.

Example 1.4. Let g = sln. Let n1, . . . , nk be the sizes of Jordan blocks in the Jordan
decomposition of α. One can show that

dimH∗(Be) =
n!

n1! . . . nk!
.

In this case, the number of finite dimensional irreducible modules can be computed by more
elementary techniques than those of [BMR].

Let us proceed to explaining what is known about the dimensions of the simple Uα(g)-
modules. They are known in principle, [BM], but the answer is involved and quite unexplicit.
There is a nice general fact proved by Premet, [P].

Theorem 1.5. We have Uα(gF) ∼= Matpd(Wα,F), where Wα,F is some associative algebra and
d = 1

2
dim g · α. In particular, the dimension of any Uα(gF)-module is divisible by pd.

1.2. Reduction to a nilpotent p-character. Let α ∈ gF. We can decompose α into the
sum αs + αn of commuting diagonalizable and nilpotent elements (Jordan decomposition).
Let g0,F stand for the centralizer of αs in gF (a so called Levi subalgebra), when g = sln,
then g0 is conjugate a subalgebra of block-diagonal matrices.

Then we have the following result.

Proposition 1.6. Uα(gF) ∼= Matpk(Uα(g0F)), where k = 1
2
dim g · αs. In particular, there is

a natural bijection Irr(Uα(gF)) ∼= Irr(Uα(g0F)).

Since αs is central in g0, we have an isomorphism Uα(g0F) ∼= Uαn(g0F).

2. Representations of GLn(Fq)

Let Fq be a finite field with q elements (so that q = pℓ for some prime p and positive
integer ℓ). We are interested in representations of the finite group G := GLn(Fq) over C.
In particular, such representations are completely reducible and we only need to classify the
irreducible representations. The number of those is the same as the number of conjugacy
classes in G. We will explain the classification of conjugacy classes later. In this lecture we
will produce the irreducible representations that correspond to unipotent conjugacy classes.
Recall that the classification of unipotent matrices up to conjugacy does not depend on
the field: the Jordan normal form theorem holds for all operators with eigenvalues in the
base field. In particular, we see that the unipotent conjugacy classes are in one-to-one
correspondence with the partitions of n.

The idea of construction of the corresponding representations comes from the represen-
tation theory of reductive groups. Namely, let B be the subgroup of all upper-triangular
matrices in G. We are looking at the irreducible representations of G that have a B-fixed
vector. We will see that these irreducible representations are classified by the partitions of
n. A crucial tool here is the so called Hecke algebra, a deformation of CSn.
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2.1. C[B \ G] and its endomorphisms. We are interested in the irreducible G-modules
V such that V B ̸= {0}, equivalently, such that (V ∗)B = (V B)∗ ̸= 0. Of course, (V ∗)B =
HomB(V,C), where we write C for the trivial B-module. Recall the coinduced module
HomB(CG,C) = C[B \G], where we write B \G for the set of left B-cosets in G and G acts
on C[B\G] by g.f(g′) = f(g′g). By its universal property, HomB(V,C) = HomG(V,C[B\G]).
So V B ̸= {0} if and only if V is a summand of C[B \G]. Recall that the assignment V 7→
HomB(V,C) = HomG(V,C[B \ G])) gives rise to a bijection between the set of V ∈ Irr(G)
that are summands in C[B \G] and the Irr(EndG(C[B \G])). So we need to understand the
structure of the algebra EndG(C[B \G]).

First of all, we will give an alternative description of this algebra. Consider the space
C[B\G]B of B-invariant functions on B\G that is naturally identified with the set of B×B-
invariant functions on G. One can define the convolution product C[B \G]B ⊗ C[B \G] →
C[B \G] as follows:

F ∗ f(g) = |B|−1
∑
h∈G

F (h)f(h−1g).

We have F ∗ f ∈ C[B \G] because

F ∗ f(bg) = |B|−1
∑
h∈G

F (h)f(h−1bg) = |B|−1
∑
h∈G

F (b−1h)f(h−1g) = F ∗ f(g).

Also note that F∗? : C[B \G] → C[B \G] is a G-equivariant homomorphism. It follows that
it restricts to a bilinear map C[B \G]B ⊗ C[B \G]B → C[B \G]B. It is straightforward to
check that (F ′ ∗F )∗f = F ′ ∗ (F ∗g). So we see that C[B \G]B is an associative algebra with
respect to convolution that acts on C[B \G] by G-equivariant endomorphisms. In particular,
we have an algebra homomorphism C[B \G]B → EndG(C[B \G]).
Lemma 2.1. The homomorphism C[B \G]B → EndG(C[B \G]) is an isomorphism.

Proof. We have HomG(C[B \G],C[B \G]) = HomB(C[B \G],C) = C[B \G]B. So the two
algebras have the same dimension. It remains to check that the homomorphism is injective.
Applying

∑
h∈G F (h)f(h

−1g) = 0 to the characteristic functions f of B-orbits in G, we see
that

∑
h∈B F (hg) = 0 for any g ∈ G. We conclude that F (g) = 0. �

The realization EndG(C[B \ G]) = C[B \ G]B is beneficial for several reasons. First of
all, we can find a basis in the right hand side. Embed W := Sn into G = GLn(Fq) as the
group of monomial matrices with unit nonzero coefficients. The Gauss elimination algorithm
proves the following fact known as the Bruhat decomposition.

Lemma 2.2. We have G =
⊔

w∈W BwB. In particular, we have the basis Tw, w ∈ W, in
C[B \G]B, where Tw is the characteristic function of BwB.

Now let us study the product Tu ∗ Tw. Let µu,w : BuB ×BwB → G be the multiplication
map. Note that B acts freely on BuB×BwB, b.(x, y) = (xb−1, by) and µu,w is B-equivariant
so that the fibers are unions of B-orbits. Then

(2.1) Tu ∗ Tw(g) =
1

|B|
|µ−1

u,w(g)|.

In particular, we see that T1 is the unit in C[B \ G]B. Now consider the case when
u = si, the simple transposition (i, i + 1). Consider the length function ℓ : W → Z>0 that
to w ∈ W assigns the minimal number ℓ such that w = si1 . . . siℓ for some i1, . . . , iℓ (such
decompositions are called reduced). It equals to the number of inversions in w. Note that
ℓ(siw) = ℓ(w)± 1.
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Proposition 2.3. We have TsTw = Tsw if ℓ(sw) = ℓ(w) + 1 and TsTw = qTsw + (q − 1)Tw
if ℓ(sw) = ℓ(w)− 1 (where we write s for si).

Proof. We have |BwB|/|B| = qℓ(w). This can be deduced from the Gauss elimination algo-
rithm or from the equality |BwB|/|B| = |B|/|B∩wBw−1| (the intersection can be described
explicitly).

Consider the case ℓ(sw) = ℓ(w)+1 so that |BswB|/|B| = (|BsB|/|B|)(|BwB|/|B|). Note
that BswB lies in the image of µs,w and so we get |µ−1

s,w(g)| = |B| if g ∈ BswB and µ−1
s,w(g)

is empty else. We deduce that TsTw = Tsw.
Now let us consider the case when ℓ(sw) = ℓ(w) − 1. Let u = sw. By the previous

case, Tw = Ts ∗ Tu. So we just need to prove that T 2
s = q + (q − 1)Ts. We have the

inclusion BsB ⊂ Pi, where Pi consists of all matrices (ajk) such that ajk ̸= 0 implies
j 6 k or j = i + 1, k = i. Therefore BsBBsB ⊂ BsB ⊔ B so the only basis elements
that can occur with nonzero multiplicities in T 2

s are Ts, 1. The preimage of 1 under µs,s

is isomorphic to BsB and so the coefficient of 1 equals |BsB|/|B| = q. Since |BsB|2 =
|µ−1(1)||B|+ |µ−1(s)||BsB| = q|B|+ |µ−1(s)|q|B|, we deduce that |µ−1(s)|/|B| = q−1. This
proves T 2

s = q + (q − 1)Ts. �

Below we will write Ti instead of Tsi .

Corollary 2.4. We have T 2
i = (q − 1)Ti + q, TiTj = TiTj if |i − j| > 1 and TiTi+1Ti =

Ti+1TiTi+1.

An advantage of looking at EndG(C[B \G]) is that this algebra is manifestly semisimple.

2.2. Hecke algebra over Z[v±1]. Let v be an independent variable. We define the Z[v±1]-
algebra Hv(n) by the generators Ti, i = 1, . . . , n − 1 and the relations as in Corollary 2.4,
where q is replaced with v. For w ∈ W , we define an element Tw as follows. Choose a
reduced expression w = si1 . . . siℓ , where ℓ = ℓ(w). It is a classical fact that any two reduced
expressions of w are obtained from one another by a sequence of braid moves: replacing
sisj with sjsi when |i − j| > 1, and replacing sisi+1si with si+1sisi+1 and vice versa. Set
Tw = Ti1 . . . Tiℓ , this is well-defined.

Theorem 2.5. The algebra Hv(n) is a free Z[v±1]-module with basis Tw, w ∈ W .

Proof. We note that TiTw = Tsiw if ℓ(siw) = ℓ(w) + 1, and TiTw = (v − 1)Tw + vTsiw if
ℓ(siw) = ℓ(w)− 1. So the span of Tw’s is closed under the multiplication by the generators
and hence Tw’s span Hv(n). In order to show that the elements Tw are linearly independent
over Z[v±1], consider the free Z[v±1]-module U with basis uw, w ∈ W . Define an action of
the generators Ti on U by

(2.2) Tiuw =

{
usiw, ℓ(siw) = ℓ(w) + 1,

(v − 1)uw + vusiw, ℓ(siw) = ℓ(w)− 1.

It is straightforward (but tedious) to check that this extends to an Hv(n)-action. Since
Twu1 = uw, we see that the elements Tw are linearly independent. �

For z ∈ C×, set HC,z(n) := Cz ⊗Z[v±1] Hv(n), where the homomorphism Z[v±1] → Cz is
given by v 7→ z. We note that C[B \G]B = HC,q(n), while CSn = HC,1(n).
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2.3. Structure of Hecke algebras. The following result is known as the Tits deformation
principle.

Theorem 2.6. Let X be a principal open subset in Cn and A is a free C[X]-algebra of finite
rank. For any two points x, y ∈ X, if the specializations Ax, Ay are semisimple, then they
are isomorphic.

Corollary 2.7. We have an isomorphism HC,q(n) ∼= HC,1(n).

Proof. We apply Theorem 2.6 to X = C×, A = C[v±1]⊗Z[v±1] Hv(n), x = 1, y = q. �

Proof of Theorem 2.6. The proof is in several steps.
Step 1. Let r be the rank of A. Pick some basis v1, . . . , vr of the C[X]-module A. The

coefficient of vℓ in vivj is an element of C[X]. So we get a morphism φ : X → Cr∗⊗Cr∗⊗Cr

of algebraic varieties that sends x ∈ X to the multiplication of Ax (in basis v1, . . . , vr).
Step 2. Recall the form (·, ·) on the associative algebra A given by (a, b) = trA(ab). Its

entries are again functions on C[X]. The locus where this form is non-degenerate is the locus
of x ∈ X such that Ax is semisimple. So we can replace X with a principal open subset and
assume that Ax is semisimple for any x ∈ X.

Step 3. The group GLr(C) acts on the space of products Cr∗ ⊗Cr∗ ⊗Cr by base changes.
There are finitely many orbits of this group corresponding to semisimple associative algebras.
We see that the image of φ lies in the union of these orbits.

Step 4. Pick a point x and let y1, . . . , yn be affine coordinates on X centered at x. Set
R := C[[y1, . . . , yn]]. Consider the algebra Â = R⊗C[X]A. This is an R-algebra that is a free

finite rank module over R such that Â/mÂ = Ax, where m ⊂ R is the maximal ideal. We

want to prove that Â ∼= R ⊗ Ax (in other words, A is a trivial bundle of algebras over the
formal neighborhood of x in X).

Step 5. We will use the result about lifting of idempotents: if e is an element in Ax such
that e2 = e, then there is an element ê ∈ Â that maps to e under the projection Â � Ax

and satisfies ê2 = ê.
Pick primitive idempotents (=diagonal matrix unit) e1, . . . , ek, one per each direct sum-

mand. Lift them to idempotents ê1, . . . , êk ∈ Â. So V̂i := Âêi is free over R and V̂i/mV̂i =

Vi(= Axei). We have an algebra homomorphism Â→
⊕k

i=1 EndR(V̂i) given by the action of

Â on V̂1 ⊕ . . . ⊕ V̂k. It specializes to the homomorphism Ax →
⊕k

i=1 End(Vi) given by the
action of Ax on V1⊕ . . .⊕Vk. But the latter homomorphism is an isomorphism. Now we are
done by a standard fact: let ψ :M → N be a homomorphism of free finite rank R-modules
that is an isomorphism after specializing to the residue field. Then ψ is an isomorphism.

Step 6. The preimage of a locally closed subvariety under a morphism is a locally closed
subvariety. The claim that A is a trivial bundle of algebras over a formal neighborhood of
x in X shows that the preimage of any orbit of a semisimple associative algebra under φ is
open. Since X is irreducible, we see that only one of these preimages is nonzero. �

One can ask, for which q the algebra HC,q(n) is semisimple. The answer is: if and only
if q is not a root of 1 of order 6 n. In fact, one can develop the representation theory of
HC,q(n) for q as above in the same fashion as for CSn by using the multiplicative versions
of the Jucys-Murphi elements to be introduced in Homework 3. Using this construction one
can produce a natural bijection between Irr(HC,q(n)) and Irr(Sn) (that cannot be deduced
from Theorem 2.6).
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