
LECTURE 9: FINITE GROUPS OF LIE TYPE AND HECKE ALGEBRAS

IVAN LOSEV

Introduction

We continue to study the representation theory of finite groups of Lie type and its connec-
tion to Hecke algebras, now in a more general setting. We start by defining Hecke algebras
of arbitrary Weyl groups. Then we introduce finite groups G of Lie type and relate the co-
induced representations C[B \G] to Hecke algebras, similarly to what was done for GLn(Fq).

In the second part of this lecture we discuss a way to produce representations of finite
groups of Lie type that is of crucial importance for the classification of irreducibles and
computation of their characters: the Deligne-Lusztig induction. We start by explaining the
induction (or, in our conventions, co-induction) of a character of B lifted from a character
of T . Then we describe maximal tori of G, since our field is not algebraically closed two
maximal tori do not need to be conjugate. Finally, we discuss the Deligne-Lusztig induction,
it is constructed using étale cohomology and produces a virtual representation of G starting
with a character of a torus.

1. Hecke algebras and finite groups of Lie type

1.1. Generic Hecke algebras. Let GC be a semisimple algebraic group over C and W be
its Weyl group. Recall that each reflection in W is conjugate to a simple reflection. Let
S denote the set of simple reflections in W . We define independent variables vs such that
vs = vt and s, t ∈ S are such that s and t are conjugate in W . For example, in types
A,D,E (simply laced types) all reflections are conjugate (any two adjacent simple roots are
conjugate in W and hence the corresponding reflections are conjugate). So here we have one
variable. In types B,C, F,G we have two possible lengths of roots that lead to two conjugacy
classes and so will have two variables vs. For s, t ∈ S let mst be the number of edges between
s, t in the Dynkin diagram plus 2 so that m = mst is the minimal positive integer such that
(st)m = 1, equivalently, sts . . . = tst . . ., where in each side we have m factors.

We define the generic Hecke algebra H = H(W ) as the algebra over Z[v±1
s ]s∈S generated

by the elements Ts, s ∈ S, with relations

TsTtTs . . . = TtTsTt . . . (mst factors), (Ts − vs)(Ts + 1) = 0.

IfW = Sn, we get the algebraHv(n) introduced in the previous lecture. As another example,
consider the Weyl group of type Bn (or Cn, they are the same). We number the simple
reflections as follows s0 = sϵn , si = sϵn+1−i−ϵn−i

, i = 1, . . . , n − 1. We have mij = 2 if
|i− j| > 1,m01 = 4,mi,i+1 = 3 if i > 0. We write v for vi, i > 0 and V for v0. The relations
become as follows: T1, . . . , Tn−1 have relations as in Hv(n), while T0Ti = TiT0 for i > 1,
T0T1T0T1 = T1T0T1T0, (T0 − V )(T0 + 1) = 0.

For w ∈ W , we have an element Tw = Ti1 . . . Tik for a reduced expression w = si1 . . . sik ,
again, Tw is well-defined. Similarly to the Sn-case we have the following theorem.

Theorem 1.1. The algebra H(W ) is a free module over Z[v±1
s ] with basis Tw, w ∈ W .

1



2 IVAN LOSEV

For numerical values qs ∈ C× of the variables vs, we can consider the specialization
HC,q•(W ) of H(W ), a C-algebra. The Tits deformation principle implies the following.

Proposition 1.2. Suppose the algebra HC,q•(W ) is semisimple. Then it is isomorphic to
CW .

Remark 1.3. All constructions here generalize to real reflection groups (finite groups of
isometries of a Euclidian space generated by reflections), e.g. to dihedral groups.

We can also define Hecke algebras for arbitrary symmetrizable Cartan matrices, they will
deform the group algebras of the Weyl groups. These Hecke algebras are going to be impor-
tant for us when we discuss the character formulas for irreducible rational representations
of reductive algebraic groups. Note that Proposition 1.2 no longer holds because the Hecke
algebra is no longer finite dimensional.

1.2. Finite groups of Lie type. Let F be the algebraic closure of Fp. Consider a connected
reductive algebraic groupGF. This group is known to be defined over Fp. Further, we can find
a maximal torus and Borel subgroup TF ⊂ BF ⊂ GF defined over Fp. For the classical groups
SLn(F), Sp2n(F), SOn(F), this can be checked directly (we take all diagonal matrices for TF
and all upper triangular matrices for BF, recall that we take forms given by anti-diagonal
matrices to define Sp2n(F), SOn(F)).

Now pick ℓ > 0 and set q = pℓ. Let Fr denote the automorphism x 7→ xq of F so that Fq

is the fixed point locus of Fr (we will write Frq when we want to indicate the dependence on
q). Since GF is defined over Fp, we get the Frobenius homomorphism Fr : GF → GF. We
can define the group G = GFq as the fixed point set of Fr in GF. The group G is a special
case of a finite group of Lie type. Examples include SLn(Fq) (or GLn(Fq)), Sp2n(Fq) and
SOn(Fq). Let us write NF for the normalizer of TF in GF. Clearly, NF is Fr-stable and we
set N := NFr

F . So we have subgroups T := TFq ⊂ N,B := BFq ⊂ G (a maximal torus and a
Borel subgroup).

More generally, let Φ be an automorphism of GF such that some power of Φ is Frqk .
Suppose that TF, BF are Φ-stable (so that NF is also Φ-stable). We get the fixed point
subgroup G := GΦ

F ⊂ GF
qk
. This is a general case of a split finite group of Lie type. We also

get subgroups T := TΦ
F ⊂ N := NΦ

F , B := BΦ
F .

We want to give a classical example of G = GΦ
F ,Φ ̸= Frq: a finite unitary group. Recall

that if we have a hermitian form h on a complex vector space V , we can define the unitary
group U(h) of all linear transformations of V that are unitary with respect to h (when h is
positive definite we get the usual unitary group). If J is the matrix of h, then U(h) = {A ∈
GLn(C)|ĀtJA = J} (the superscript “t” means the transposed matrix).

Now consider the group GLn(F). Let J denote the matrix with 1’s on the main anti-
diagonal and zeroes elsewhere. We have an automorphism α of GLn(F) given by A 7→ JAtJ .
Note that α2 = 1 and α ◦ Frq = Frq ◦ α. Set Φ := α ◦ Frq so that Φ = α ◦ Φ,Φ2 = Frq2 .
Consider the group GLn(F)Φ = {A ∈ GLn(Fq2)|ĀtJA = J}, where Ā is obtained from A
by applying Frq : Fq2 → Fq2 . The group GLn(F)Φ is called the finite unitary group and is
denoted by GUn(Fq).

One reason to care about finite groups of Lie type comes from the theory of finite simple
groups. Each finite simple group is either

• the alternating group An,
• or a (generally, non-split) finite group of Lie type,
• or one of finitely many sporadic finite simple groups.
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1.3. Hecke algebras and representations of G. Let G := GΦ
F , where Φ is as above.

Then we have subgroups T ⊂ N,B ⊂ G. Clearly T ⊂ N is a normal subgroup and we can
form the quotient W := N/T . We set BwB := BnB, where n is any representative of w in
N . The following theorem gives the Bruhat decomposition.

Theorem 1.4. We have G =
⊔

w∈W BwB.

Inside W we can find a subset S of involutions such that (W,S) becomes a Coxeter system
(so that W is a real reflection group and S is the set of simple reflections). Furthermore, we
have BswB = BsBBwB if ℓ(sw) = ℓ(w)+1 and BswB⊔BwB = BswB if ℓ(sw) = ℓ(w)−1.
Set qs := |BsB|/|B|, one can show qs = qt if s, t are conjugate in W . Moreover, if Φ = Frq,
we have qs = q for all s ∈ S.

Example 1.5. Consider the case G = GUn(Fq). In this case, W is the Weyl group of type
B⌊n/2⌋. We have qi = q2 for i > 0. If n is even, we get q0 = q, and if n is odd, then q0 = q3.
This is a part of Homework 3.

Consider the specialization HC,q•(W ), where the variable vs goes to qs.

Theorem 1.6. The endomorphism algebra EndG(C[B \G]) is isomorphic to HC,q•(W ).

This allows to produce some irreducible representations of G (the number is equal to the
number of W -irreps). Of course, this is just a tiny portion of all representations.

2. Deligne-Lusztig induction

2.1. Induction from Borel. Let us produce more irreducible representations. Before we
co-induced from the trivial B-module. Now let us consider one-dimensional B-modules with
trivial action of U := UΦ

F , the unipotent subgroup (in our examples, this is the group of all
strictly upper-triangular matrices). Such a module is given by a character of T , say χ. The
coinduced module HomB(CG,Cχ) coincides with C[B \χG] = {f ∈ C[G]|f(bg) = χ(b)f(g)}.
The endomorphism algebra EndG(C[B \χ G]) is HomG(C[B \χ G],Cχ) = C[G]B×B,χ×χ−1

,
where, by definition, the right hand side is {f ∈ C[G]|f(b1gb2) = χ(b1)f(g)χ(b2)}. The latter
coincides with

⊕
w∈W C[BwB]B×B,χ×χ−1

. The space C[BwB]B×B,χ×χ−1
is one dimensional if

χ ∈ Hom(T,C×) is fixed by w−1 and is zero else. Indeed, take b1, b2 ∈ T, b1 = nb2n
−1, where

n is a representative of w. Then we get f(n)χ(b2) = f(nb2) = f(b1n) = χ(nb2n
−1)f(n)

meaning χ(b2) = χ(nb2n
−1) = (w−1.χ)(b2). So if f(n) ̸= 0, then χ is fixed by w−1. A

converse is an exercise.
As we have seen, if χ = 1, then each space C[BwB]B×B,χ×χ−1

is one-dimensional. The
other extreme is when χ is generic, i.e., it is not fixed by any non-trivial Weyl group element.
In this case dimEndG(C[B \χ G]) = 1 and so C[B \χ G] is irreducible. The general case
interpolates between these two: the endomorphism algebra will be isomorphic to the (suitably
understood) Hecke algebra of Wχ, the stabilizer of χ. Let us point out that Wχ does not
need to be a Coxeter group. This does not happen for G = GLn(Fq): here χ can be thought
as an element of (F×

q )
n, and the group Wχ is the product of symmetric groups.

Lemma 2.1. The modules C[B \χ G] and C[B \χ′ G] have common direct summands if and
only if χ, χ′ are W -conjugate. In the latter case, they are isomorphic.

Proof. Consider the space {f ∈ C[BwB]|f(b1gb2) = χ(b1)f(g)χ
′(b2)}. It is one-dimensional

if and only if χ = wχ′ (this follows from an argument above) and is zero else. This implies
the first claim.

The second claim for G = GLn(Fq) will be a part of Homework 3. �
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2.2. Conjugacy classes and tori. Now let us discuss the structure of conjugacy classes
in G. We start with G = GLn(Fq). Let α be a primitive element in Fqm . Consider the
endomorphism Aα : Fm

q → Fm
q (given by the multiplication by α in Fm

q = Fqm). After a base

change to F, the operator Aα becomes diagonalizable with eigenvalues α,Frq(α), . . . , Fr
m−1
q α.

So the operators Aα, Aβ are conjugate if and only if β = Frkqα in this case we say that α, β
are equivalent.

We say that an element A ∈ GLn(Fq) is semisimple if it becomes diagonalizable over F.
Any semisimple element is conjugate to an operator of the form diag(Aα1 , . . . , Aαk

), where
α1, . . . , αk are defined uniquely up to a permutation and equivalences. More generally, we
have an obvious analog of the Jordan normal form theorem.

Now fix a partition ν = (ν1, . . . , νk) of n and consider the set Tν of all elements of the form
diag(Aα1 , . . . , Aαk

), where αi ∈ Fqνi (not necessarily primitive). This is a subgroup. For
ν = (1, 1, . . . , 1), we get Tν = T . The subgroups Tν are the maximal tori in G = GLn(Fq)
(up to conjugacy). All of them but T are not included into a Borel subgroup (=do not
preserve a complete flag).

Let us extend this construction to a general G (with Φ = Frq) and make it more conceptual.
If SF ⊂ GF a Fr-stable maximal torus, then (SF)

Fr is an abelian subgroup in G. But it does
not need to be conjugate to T . We have SF = gTFg

−1 for some g ∈ GF. The equality
Fr(SF) = SF is equivalent to g−1Fr(g) ∈ NF. Now we have the following theorem of Lang.

Theorem 2.2. The map L : GF → GF given by g 7→ g−1Fr(g) is surjective.

Proof. The proof is based on the observation that the tangent map of Fr is zero at all points.
Consider the action of GF on itself given by g.h := ghFr(g)−1. For any fixed h, the map
g 7→ g.h is etale (all tangent maps are iso). So any GF-orbit on GF has dimension dimGF and
is open. Since GF is connected, we get a single orbit. This shows that the map g 7→ gFr(g)−1

is surjective. It follows that L is surjective. �
So pick n ∈ NF and set SF = gTFg

−1, where g ∈ GF is such that g−1Fr(g) = n. Up to
G-conjugacy, the subgroup (SF)

Fr depends only on the image w of n in W . So we denote it
by Tw. Moreover, it only depends on the conjugacy class of w.

Example 2.3. When G = GLn(F), then Tν = Tw, where ν is the cycle type of w. It is enough
to check this when w is a single cycle. Under the identification of TF with SF = gTFg

−1 given
by t 7→ gtg−1, the morphism Fr : SF → SF becomes t 7→ w(Fr(t)). We can identify TF with
(F×)n such that w permutes the coordinates on TF (in a cycle). So the fixed points in TF
become (z,Fr(z), . . . , Frn−1(z)), where Frn(z) = z, i.e., z ∈ Fqn . From here it is easy to see
that (SF)

Fr is conjugate to T(n).

In fact, any semisimple element in G is conjugate to an element in Tw, note that the
conjugacy class of w is not uniquely determined by the element, for example, the constant
matrices in GLn(Fq) lie in all tori Tw.

2.3. Deligne-Lusztig induction. Recall that we can produce a representation C[B \χ G]
from a character χ of T . This involves the choice of B but as different B’s containing T
are conjugate by W , by Lemma 2.1, this choice does not affect C[B \χ G]. We denote this
representation by RG

T (χ).
We want to have a similar construction for an arbitrary maximal torus Tw of G. The

problem is that this torus is not included into a Borel subgroup. Deligne and Lusztig solved
this problem in [DL] defining what is now called the Deligne-Lusztig induction.
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Let SF ⊂ GF be a Fr-stable maximal torus and let BF = SF n UF be a Borel subgroup,
it is not Fr-stable, in general. Consider the subvariety Y := L−1(UF) ⊂ GF, i.e., {g ∈
G|g−1Fr(g) ∈ UF}. Note that G acts on Y by left multiplications: for h ∈ G, we have
L(hg) = (hg)−1Fr(hg) = g−1h−1Fr(h)Fr(g) = g−1Fr(g) = L(g). The group Tw = (SF)

Fr

acts by right multiplications because SF normalizes UF. Clearly, the actions of G and Tw

commute.
We want to get a virtual representation ofG×Tw from its action on Y (“virtual” means that

it is a formal linear combination of irreducibles with integral coefficients). This representation
will be the Euler characteristic of Y . In order to define the Euler characteristic, we need
some cohomology theory. The variety Y is over F so it is not a topological space in any
reasonable sense.

Yet there is a suitable cohomology theory, it is called étale cohomology. More precisely,
we pick a prime ℓ that does not divide q. Consider the ℓ-adic field Qℓ. Then, for an algebraic
variety X over F, we can define the ith cohomology group with compact support H i

c(X,Qℓ).
This cohomology group is a finite dimensional vector space over Qℓ, it is zero when i < 0 or
i is large enough so it makes sense to speak about the Euler characteristic χ(X,Qℓ). When
X has an action of a group H, all cohomology groups H i

c(X,Qℓ) carry a representation of
H. In particular, χ(Y,Qℓ) is a virtual representation of G × Tw (over Qℓ). The algebraic
closure Qℓ is known to be isomorphic to C. So χ(Y,C) := C⊗Qℓ

χ(Y,Qℓ) is a complex virtual
representation of G× Tw that can be shown to be independent of the choice of BF.

Example 2.4. Suppose that UF is Fr-stable. Then the Lang map LU : UF → UF is surjective.
The fiber over 1 is U . It follows that Y = G ×U UF. The group UF is an affine space and
so H i

c(UF,Qℓ) vanishes unless i = 2dimUF, in the latter case, dimH i
c(UF,Qℓ) = 1. So,

χ(Y,C) = C⊗Qℓ
H2 dimUF

c (Y,Qℓ) = C[U \G] (an equality of G× T -modules).

Now let us explain the construction of RG
Tw
(χ), where χ is a character of Tw. We simply

take RG
Tw
(χ) := [χ(Y,C)⊗χ]Tw . In the case when Tw = T , we recover the co-induced module

C[B \χ G].
The virtual representations RG

Tw
(χ) were extensively studied by Deligne and Lusztig, and

then by Lusztig, see, e.g. [L], there is also an exposition of these results in [C]. For example,
one can show that every irreducible representation of G appears in one of RG

Tw
(χ).

One can define the notion of conjugate characters χ of Tw, and χ′ of Tw′ . It is easy to define
this notion when w is conjugate to w′, while in general one should view χ, χ′ as elements of
the so called Langlands dual group. For example, the trivial characters of different tori are
all conjugate. It was shown in [DL] that if χ, χ′ are not conjugate, then RG

Tw
(χ) and RG

Tw′ (χ
′)

do not have common summands.
The most interesting and complicated case is when χ = 1. The representations that appear

in RG
Tw
(1) are called unipotent. In the case when G = GLn(Fq) all unipotent representations

are already realized for w = 1, while outside of type A, this is not so. Morally, the unipotent
representations should correspond to unipotent conjugacy classes, but this correspondence
is subtle (for example, there are three unipotent conjugacy classes for SL2(Fq) for odd q but
only two unipotent representations).
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