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1. Introduction

1.1. Representations of finite (almost) simple groups. Let G be a finite group. We
are interested in studying its representations. Let us briefly outline some motivations.

First, the representation theory of finite groups plays a very important part in their
structure theory (we will see later that this phenomenon extends beyond finite groups), e.g.
in understanding the finite simple groups. Recall that a group G is called simple if the only
two normal subgroups are {1} and G. For example, the only commutative simple groups
are the cyclic groups of prime order. In what follows, when we talk about simple groups we
exclude those.

The representation theory is used to prove many results concerning simple groups: from
the Burnside theorem that can be formulated as saying that the order of a simple group must
have at least three distinct prime divisors, [E, Section 5.4], to the Brauer-Suzuki theorem on
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the absense of certain 2-subgroups in finite simple groups, to the celebrated Feit-Thompson
theorem that all finite simple groups have even order.

Second, the representation theory of finite groups has various applications outside the core
theory of finite groups, see [T, Section 3] for a survey of recent results.

Of course, there are many finite groups, and we should understand which ones we should
care about most. Our answer: we care about simple G or “almost simple” G – we will not
give a formal definition but explain what this means by an example later. One reason to
stick to (almost) simple groups is that many general conjectures in the field can be reduced
to that case, see [T, Section 2] for a survey.

The classification of finite simple groups is known. It is as follows.
1) There is an infinite family of the alternating groups An, n > 5. By definition, An is the

subgroup in Sn consisting of all even permutations.
2) There are twenty six exceptional (a.k.a. sporadic) finite simple groups with the Monster

(a.k.a. the Friendly giant) being the largest of them.
3) The rest, and, in a sense, the absolute majority of finite simple groups are the (closed

relatives of) so called finite groups of Lie type (a.k.a. finite reductive groups). We will get to
them in a later part of this course.

1.2. The case of symmetric groups. Now we explain how the symmetric groups Sn
enter the picture. By definition, we have An ⊂ Sn, and An is a normal subgroup of index 2.
Informally, these groups are very close to each other. So one can say Sn is “almost simple”
(at least, for n > 5).

The study of irreducible representations of An reduces to those of Sn, Section 6.2. And
the representation theory of Sn is nicer. This is why we concentrate on Sn.

Of course, the ideology of emphasizing the representation theory of finite simple groups is
just one reason to be interested in the representations of symmetric groups. Here are some
more:

• A connection to Combinatorics, i.e., partitions – this will be featured very promi-
nently, Section 5, symmetric polynomials (we will only sketch it, Section 6.1.2), etc.
• A connection to the representations of the general linear group via the Schur-Weyl

duality, to be mentioned in a later part of the course.
• A connection to the representation theory of affine Lie algebras, which is especially

interesting if instead of considering representations over C, we work over a positive
characteristic field. This will also be briefly discussed in a later part of this course.

We will concentrate on the representation theory of the symmetric groups Sn over C. For
the non-closed fields of characteristic 0 or characteristic p > n the situation turns out to be
the same. When the characteristic is p 6 n, interesting (and complicated!) things happen,
we will discuss this briefly in Section 6.4.

Now we summarize a few things that we already know about representations of a finite
group G over C (or a more general algebraically closed field of characteristic 0).

(i) A representation of G is the same thing as a representation of the group algebra CG,
[1, Example 1.16].

(ii) The algebra CG is semisimple, [1, Theorem 3.2]. So, CG ∼=
⊕

V EndC(V ), where
the summation is taken over isomorphism classes of irreducible CG-modules, see [1,
Theorem 2.24]. Every representation of G is completely reducible, so what we need
to understand is the irreducible representations.
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(iii) The number of irreducible representations of G up to an isomorphism coincides with
the number of conjugacy classes in G.

The conjugacy classes in Sn are in a natural bijection with partitions of n. Namely, we
take an element σ ∈ Sn and decompose it into the product of disjoint cycles. The lengthes
of cycles form a partition of n that is independent of the choice of σ in the conjugacy class.
We assign this partition to the conjugacy class of σ. Conjugacy classes will be denoted
like (∗ ∗ ∗)(∗∗). This represents the conjugacy class in Sm+5 corresponding to the partition
(3, 2, 1, . . . , 1), where m is the number of 1’s – we will usually omit the cycles of length 1 in
the notation. Our notation for partitions is (n1, . . . , nk), where n1 > n2 > . . . > nk are the

parts, or (md1
1 , . . . ,m

d`
` ), where m1 > m2 > . . . > m` are the distinct parts and d1, . . . , d`

are their multiplicities. For example, (2, 2, 1, 1) and (22, 12) is two different notations for the
same partition of 6.

We would like to emphasize that (iii) does not establish any preferred bijection between
the irreducible representations of Sn and the partitions of n. To establish such a bijection is
our goal in this part. We will follow a “new” approach to the representation theory of the
groups Sn due to Okounkov and Vershik, [OV]. Our exposition follows [Kl, Section 2]. For
a “traditional” approach based on Young symmetrizers, the reader is welcome to consult [E,
Section 5.12-5.15] or [F, Section 7].

Example 1.1. In [1, Example 3.4] we have completely classified the irreducible representa-
tions of S4. This will be our running example in this chapter. We now describe the resulting
bijection with the partitions of 4. The trivial representation triv4 corresponds to the par-
tition (4). The sign representation sgn4 corresponds to (14). The reflection representation
refl4 corresponds to (3, 1), while its twist with the sign, sgn4⊗ refl4 corresponds to (2, 12).
Finally, the 2-dimensional irreducible representation corresponds to (22). Note that 4 has
five different partitions and we have listed all of them.

Remark 1.2. Let V be a CSn-module. Note that V ⊗ sgnn is the same space as V but the
action of each permutation is multiplied by its sign.

2. Inductive approach

A key observation is that symmetric groups for different n are embedded into one another:
{1} = S1 ⊂ S2 ⊂ S3 . . . ⊂ Sn−1 ⊂ Sn ⊂ . . ., where, for k = 1, . . . , n − 1, we view Sk as the
subgroup of Sk+1 consisting of all elements that fix k + 1 ∈ {1, . . . , k + 1}. We could try to
use “induction”, i.e., to study the irreducible representations of Sn by restricting them to
Sn−1. In fact, this naive idea does not quite work – we will need something more elaborate–
but this is our starting point. Our exposition in Sections 2-5 will essentially follow Sections
2.1 and 2.2 in [Kl].

2.1. Centralizer ZB(A) and restrictions of representations. Let V be an irreducible
representation of Sn. So we will need to “understand” the restriction of V to Sn−1, where
“understand” means: decompose into the direct sum of irreducibles. In fact, for our purposes
we will also need to understand the restriction to Sn−2 ⊂ Sn, we will explain why later. Of
course, one can generalize this to the following question known as the “branching problem”:
let H ⊂ G be finite groups and V be an irreducible representation of G; decompose V into
the direct sum of irreducible CH-modules.

This problem can be further generalized. Note that CG is a semisimple associative algebra
and CH is its subalgebra that is also a semisimple associative algebra. So, given a pair
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B ⊂ A of finite dimensional semisimple associative algebras and an irreducible A-module V
one could ask to decompose V into the direct sum of irreducible B-modules. In fact, one
can generalize this further: to a pair of semisimple associative algebras B and A equipped
with a homomorphism τ : B → A. This homomorphism allows to view every A-module as
a B-module.

Below we write Irr(A), Irr(B) for the sets of isomorphism classes of irreducible A- and
B-modules so that

A
∼−→

⊕
V ∈Irr(A)

End(V ),(2.1)

B
∼−→

⊕
U∈Irr(B)

End(U).(2.2)

For U ∈ Irr(B) consider its multiplicity space in V ∈ Irr(A):

MV,U := HomB(U, V )

so that, thanks to [1, Corollary 2.16], we have a B-linear isomorphism

(2.3)
⊕
i

Ui ⊗MV,Ui
∼−→ V,

where the Ui’s are the elements of Irr(B). The isomorphism is given by
∑

i ui ⊗ ϕi 7→∑
i ϕi(ui).
So our problem is to compute the spaces MV,U . It turns out that the nonzero spaces of

this form are exactly the irreducible representations of an auxiliary algebra, the centralizer
of B in A defined as follows.

Definition 2.1. By the centralizer, ZB(A), of B in A we mean the subset

{a ∈ A|aτ(b) = τ(b)a,∀b ∈ B}.

Note that when B = A and the homomorphism τ is the identity we recover the definition
of the center of A, i.e., we have ZB(A) = Z(A).

Exercise 2.2. Show that ZB(A) ⊂ A is a subalgebra.

Lemma 2.3. We have an algebra isomorphism ZB(A) ∼=
⊕

U,V End(MV,U), where the sum

is taken over all pairs U ∈ Irr(B), V ∈ Irr(A) satisfying MV,U 6= {0}.

In other words, the algebra ZB(A) is semisimple and the irreducible ZB(A)-modules are
precisely the nonzero multiplicity spaces MV,U .

Example 2.4. Let

(2.4) A = Mat4(C)⊕Mat3(C), B = Mat2(C)⊕ C⊕2,
and τ be as follows:

τ(x1, x2, x3) = (diag(x1, x2, x2), diag(x1, x3)),

where x1 is in Mat2(C), and x2, x3 are in the 1st and 2nd copies of C. Let U1, U2, U3 be
the irreducible B-modules (of dimensions 2, 1, 1), and V1, V2 be the irreducible A-modules
(of dimensions 4, 3), according to decomposition 2.4. We see that MV1,U2 is 2-dimensional,
MV1,U1 ,MV2,U1 ,MV2,U3 are 1-dimensional, while MV1,U3 = MV2,U2 = {0}. So Lemma 2.3 means
that ZB(A) ∼= Mat2(C)⊕ C⊕3. Let us verify this directly.
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By the definition, ZB(A) consists of pairs (y1, y2) ∈ Mat4(C) ⊕ Mat3(C) such that y1
commutes with all matrices of the form diag(x1, x2, x2), while y2 commutes with all matrices
of the form diag(x1, x3). A direct check left as an exercise shows that we have

y1 =


a 0 0 0
0 a 0 0
0 0 b c
0 0 d e

 , y2 =

f 0 0
0 f 0
0 0 g

 , a, b, c, d, e, f, g ∈ C.

An isomorphism ZB(A)
∼−→ Mat2(C)⊕ C⊕3 sends this pair (y1, y2) to (

(
b c
d e

)
, a, f, g).

Proof of Lemma 2.3. Thanks to the decomposition (2.1), we can view τ : B → A as a tuple
(τV )V ∈Irr(A), where τV is an algebra homomorphism B → End(V ). For a = (aV ) ∈ A =⊕

V End(V ), we have
a ∈ ZB(A)⇔ aV ∈ ZB(End(V )),∀V.

So ZB(A) =
⊕

V ZB(End(V )). But the subalgebra ZB(End(V )) ⊂ End(V ) is exactly

EndB(V ). By [1, Remark 2.15], we have EndB(V )
∼−→
⊕

U End(MV,U), where the sum is
taken over all U ∈ Irr(B) such that MV,U 6= {0}. �

Remark 2.5. It is instructive (and useful in what follows) to describe the structure of
a ZB(A)-module on MV,U = HomB(U, V ) without referring to the decomposition A =⊕

V End(V ). Recall, [1, Remark 2.15], that the EndB(V ) acts on HomB(U, V ) via the
composition map

EndB(V )× HomB(U, V )→ HomB(U, V ), (α, ϕ) 7→ α ◦ ϕ.
So this action is induced from the action of End(V ) on V , i.e., [αϕ](u) = α[ϕ(u)].

Now let z ∈ ZB(A) and ϕ ∈ HomB(U, V ). We define zϕ ∈ HomB(U, V ) by

(2.5) [zϕ](u) = zϕ(u),

for all u ∈ U , where in the right hand side we use the A-action on V . An easy check shows
that zϕ is well-defined. Thus, under the identification (2.1), the latter action is obtained
from the action of End(V ) on V via the projection A � End(V ). Under the identification

ZB(A)
∼−→
⊕

V EndB(V ), (2.5) is obtained from the action of EndB(V ) on HomB(U, V ) under
the projection ZB(A) → EndB(V ). We conclude that (2.5) gives the same action as in the
previous paragraph.

Here is a corollary Lemma 2.3 that will be very useful for us in what follows.

Corollary 2.6. The following two conditions are equivalent:

(1) For any U ∈ Irr(B), V ∈ Irr(A), we have dim HomB(U, V ) 6 1.
(2) ZB(A) is commutative.

Proof. The algebra ZB(A) =
⊕

U,V End(MV,U) is commutative if and only if the summands

End(MV,U) are. For a nonzero vector space W , End(W ) = MatdimW (C) is commutative if
and only if dimW = 1. So, (1)⇔ (2). �

Under the equivalent conditions of the corollary, we have the decomposition V =
⊕

U U ,
where the summation is over all irreducible B-modules U that appear in V . An important
thing to notice is that in this direct sum U is uniquely determined as a subspace of V .
Indeed, U is embedded into V as the image of any nonzero element in HomB(U, V ) – since
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dim HomB(U, V ) is one-dimensional all nonzero elements are proportional, so have the same
image.

2.2. The algebra Zm(n). We get back to the case of symmetric groups. Set Zm(n) :=
ZCSm(CSn), where the embedding CSm ↪→ CSn comes from the embedding Sm ↪→ Sn as the
subgroup of all permutations fixing each of the elements m+ 1, . . . , n.

Our first observation is that we can describe a (vector space) basis in Zm(n). In fact, this
can be done in a greater generality.

Lemma 2.7. Let H ⊂ G be finite groups. Then the subspace ZCH(CG) ⊂ CG consists
of all elements of the form

∑
g∈G agg, where ag ∈ C satisfy ahgh−1 = ag for all h ∈ H. In

particular, ZCH(CG) has basis indexed by the H-conjugacy classes in G: to a conjugacy class
c we assign bc :=

∑
g∈c g ∈ ZCH(CG).

Note that in the case when H = G we recover the description of the center Z(G) of CG,
see [1, (3.2)]. The proof in the general case repeats that and is omitted.

Now we get back to the situation of CSm ⊂ CSn. The conjugation action of Sm on Sn
permutes the elements 1, . . . ,m in the permutation. So the conjugacy classes are “cycles
with marked elements m + 1, . . . , n”. The notation for these conjugacy classes will be like
(∗ ∗ 4)(5∗)(6) or (∗ ∗ 5)(46). Both denote S3-conjugacy classes in S6, the former contains an
element (124)(53) (or (234)(15)), while the latter contains (125)(46).

The following is a crucial example of the basis element in Zn−1(n) corresponding to an
Sn−1-conjugacy class in Sn.

Example 2.8. Let m = n − 1. Take the conjugacy class labelled (∗n). It consists of
transpositions (1, n), (2, n), . . . , (n− 1, n). The corresponding basis element b(∗n) in Zn−1(n)

is
∑n−1

i=1 (i, n). It is called the nth Jucys-Murphy element. We will denote it by Jn.

Our next task will be to determine algebra generators of Zm(n) (as opposed to a vector
space basis). We note that Zm(n) contains the following elements and subalgebras.

(a) The center of CSm, i.e., Zm(m). Note that Zm(m) lies in the center of Zm(n): it is
contained in CSm and every element of Zm(n) commutes with every element of CSm,
by definition of Zm(n).

(b) Let S[m+1,n] denote the subgroup of Sn consisting of all permutations fixing each of
1, . . . ,m. Since each permutation from Sm commutes with each permutation from
S[m+1,n], we have CS[m,n+1] ⊂ Zm(n).

(c) We can consider the Jucys-Murphy elements Jk :=
∑k−1

i=1 (i, k). Since Jk commutes
with CSk−1 for all k = 1, . . . , n, we have Jm+1, . . . , Jn ∈ Zm(n).

Note that the elements Jm+1, . . . , Jn pairwise commute: for k < ` we have Jk ∈ CS`−1 and
J` ∈ Z`−1(`).
Theorem 2.9. The algebra Zm(n) is generated by the subalgebras Zm(m),CS[m+1,n] and the
elements Jm+1, . . . , Jn (as an algebra).

Proof. To an Sm-conjugacy class c in Sn we assign its degree deg c that, by definition, is equal
to the number of elements in {1, . . . , n} moved by an element in c (this is independent of the
choice of the element). For example, deg(∗n) = deg(∗∗) = 2. In particular, either deg c = 0,
which is the case precisely for the class of the identity, or deg c > 2.

Let A be the subalgebra in Zm(n) generated by Zm(m), S[m+1,n], Lm+1, . . . , Ln. We need
to show that bc ∈ A for all c. Assume the contrary and pick c of minimal degree such that
bc 6∈ A. We will arrive at a contradiction at several steps.



CHAPTER 1: REPRESENTATIONS OF SYMMETRIC GROUPS 7

Step 1. To start, note that, clearly, deg c > 0. Also deg c > 2. Indeed, we have the
following conjugacy classes of degree 2:

• (∗, k), where k > m. Here b(∗,k) =
∑m

i=1(i, k) = Jk −
∑k−1

i=m+1(i, k) ∈ A, as the sum is
in CS[m+1,n].
• (k, `) with m < k < ` 6 n. Here b(k,`) = (k, `) ∈ CS[m+1],n ⊂ A.
• (∗, ∗). Here b(∗,∗) ∈ Zm(m) ⊂ A.

Step 2. Assume, first, that c has more than one cycle of length at least 2. Break c into the
union of two cycle types c′, c′′, e.g., if c = (6∗∗)(5∗), then we can take c′ = (6∗∗), c′′ = (5∗).
Note that

bc′bc′′ = αbc +
∑

c0,deg c0<deg c

αc0bc0 ,

where α > 0. Here the first summand incorporates the products of disjoint elements of
c′, c′′ (all stars are pairwise distinct), and the sum corresponds to non-disjoint elements, here
the degree of the product drops. By the degree minimality assumption on c, bc0 ∈ A and
bc′bc′′ ∈ A. So bc ∈ A, which contradicts the choice of c.

Step 3. Now let us pick a cycle (i1, i2, . . . , ik) ∈ Sn and consider the product (i1, . . . , ik)(is, j).
If j 6∈ {i1, . . . , ik}, then we get (i1, . . . , is, j, is+1, . . . , ik). If j ∈ {i1, . . . , ik}, then (i1, . . . , ik)(ikj)
either splits into the product of two cycles of total degree k or is a cycle of degree k − 1.

Step 4. Now suppose that the cycle in c has both an element from {1, . . . ,m} (does
not matter which, denote it by ∗) and k ∈ {m + 1, . . . , n}. We may assume that k is
right after ∗ in the cycle. Let c′ denote the cycle obtained from c by deleting k. Then
bc′b(∗,k) = αbc +

∑
c0
αc0bc0 , where the summation is over c0 that are products of two disjoint

cycles with deg c0 = deg c or have deg c0 < deg c. This is a consequence of Step 3, as the
left hand side is the sum of products of pairs of cycles that share a common element, k.
Similarly to Step 2, we arrive at a contradiction with the choice of c.

Step 5. So either the elements in the only cycle of c are all from {1, . . . ,m}, in which case
bc ∈ Zm(m), or are all from {m+ 1, . . . , n}, in which case bc ∈ S[m+1,n]. Contradiction. �

Here is an important corollary of Theorem 2.9 concerning the case m = n− 1.

Corollary 2.10. The following claims are true:

(1) The algebra Zn−1(n) is commutative.
(2) For all U ∈ Irr(CSn−1) and V ∈ Irr(CSn), the multiplicity of U in V is 0 or 1.
(3) The element Jn acts on each irreducible CSn−1-submodule of V ∈ Irr(CSn) by a scalar

(depending on the submodule).

Proof. (1): The algebra Zn−1(n) is generated by its central subalgebra Zn−1(n − 1) and
Jn. In particular, the generators pairwise commute. Since Zn−1(n) is generated by pairwise
commuting elements, it is commutative.

(2): this follows from (1) and Corollary 2.6.
(3): since Jn commutes with CSn−1, the operator Jn,V of multiplication by Jn is a CSn−1-

linear map V → V . Let U be an irreducible CSn−1-module appearing in V . By [1, Theorem
2.14(2)], Jn,V sends U to U . And then by the Schur lemma, [1, Theorem 2.8], this restriction
is a scalar. �

Example 2.11. Let us see how Jn acts and how V decomposes into irreducible CSn−1-
modules in various examples of V ∈ Irr(CSn).

1) V = refln, the (n−1)-dimensional reflection representation of Sn realized as {(x1, . . . , xn) ∈
Cn|x1 + . . . + xn = 0}, where Sn acts on Cn by permuting the coordinates. If n > 2, the
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representation refln decomposes as the direct sum of two irreducible representations of Sn−1:
{(x1, . . . , xn−1, 0)}, isomorphic to refln−1, and the trivial representation {(−x, . . . ,−x, (n −
1)x)}. The element Jn =

∑n−1
i=1 (i, n) sends (x1, . . . , xn) to ((n− 2)x1 +xn, . . . , (n− 2)xn−1 +

xn, x1 + . . .+xn−1). The reflection subrepresentation is the eigenspace for Jn with eigenvalue
(n− 2), while the trivial subresentation is the eigenspace with eigenvalue −1.

2) Let n = 4 and V be the two-dimensional irreducible representation of S4. Recall,
[1, Example 3.4], that it is pulled back from the reflection representation of S3 under an
epimorphism S4 � S3. The composition S3 ↪→ S4 → S3 is the identity, while the image of
J4 in S3 under S4 � S3 is (1, 2) + (2, 3) + (1, 3). This element acts by 0 on the reflection
representation of S3.

To finish this discussion we will make three remarks.

Remark 2.12. One can show that the algebra Zm(n) is generated by Zn(n) (the center of
CSn), CS[m+1,n] and the Jucys-Murphy elements Jm+1, . . . , Jn. The proof is similar to that
of Theorem 2.9 and is left as an exercise. This has an interesting corollary, every eigenspace
for Jn in an irreducible CSn, a CSn−1-submodule by (3) of Corollary 2.10, is an irreducible
CSn−1-submodule. This is also left as an exercise.

Remark 2.13. Once we know the generators of Zm(n) a natural thing to ask is about the
relations. In solving our classification problem below we will need to know “useful” relations
between (n − 1, n), Jn−1, Jn in Zn−2(n). This will give rise to the degenerate affine Hecke
algebra H(2).

Remark 2.14. Theorem 2.9 remains true if we replace C with any algebraically closed field
of characteristic 0. It may fail in characteristic p, as the coefficients α in the proof may be
zero modulo p.

3. Branching graph, paths and weights

3.1. Branching graph. Let V n be an irreducible CSn-module. Thanks to (2) of Corollary
2.10, we can (uniquely) decompose V n into the direct sum of pairwise non-isomorphic CSn−1-
modules. In its turn, each of the summands can be decomposed into the direct sum of
pairwise non-isomorphic CSn−2-modules, etc. So, for each m < n, we can decompose V n

into the direct sum of irreducible CSm-modules. We emphasize that, while every CSm-
module admits such a decomposition, it is not canonical, in general. The reason why we get
a canonical decomposition of V n is the chain of inclusions Sm ⊂ Sm+1 ⊂ . . . ⊂ Sn and (2) of
Corollary 2.10.

To control the summands we will need the following combinatorial object.

Definition 3.1. The branching graph is a directed graph, where the vertices are labeled
by the (isomorphism classes of) irreducible CSn-modules (for all n). We have an edge
from U to V if and only if V is an irreducible representation of some CSn and U is an
irreducible representation of CSn−1 that occurs in V , i.e., is isomorphic to a summand in
the decomposition of V into the direct sum of irreducible CSn−1-module.

So the branching graph shows, for example, how to restrict the irreducible representations
of CSn to CSn−1 for each n.

Here is an example of the piece of the branching graph up to n = 4. It is based on Example
2.11 and the observation that tensoring with the sign gives a symmetry of the graph (and
also that restricting 1-dimensional representations is easy and pleasant).
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We can talk about (oriented) paths in the branching graph. For V m ∈ Irr(CSm), V n ∈
Irr(CSn) with m < n, let Path(V m, V n) denote the set of all paths from V m to V n If m = 1,
then we have only one irreducible module V 1 and we write Path(V n) for Path(V 1, V n). We
set

Pathn :=
⊔

V n∈Irr(CSn)

Path(V n).

Let P = (V m → V m+1 → . . . → V n) ∈ Path(V m, V n). We write V m(P ) for the copy of
V m inside V n embedded according to P , i.e., via V m ↪→ V m+1 ↪→ . . . ↪→ V n (we emphasize
again that any two embeddings of V k into V k+1 are proportionaly). So, we can write the
decomposition mentioned in the beginning of the section as

(3.1) V n =
⊕

Vm∈Irr(Sm)

⊕
P∈Path(Vm,V n)

V m(P ).

Let ϕP denote the inclusion V m ↪→ V n corresponding to P . Note that it is defined uniquely
up to rescaling. Define wP = (wm+1, . . . , wn) ∈ Cn−m as follows: wk is the scalar by which
Jk acts on Vk−1 ⊂ Vk, which makes sense by (3) of Corollary 2.10. We call wP the weight of
P .

Recall that HomCSm(V m, V n) is an irreducible Zm(n)-module, Lemma 2.3, where the ac-
tion is given by (2.5). In particular, the elements Jm+1, . . . , Jn ∈ Zm(n) act on HomCSm(V m, V n).

Now we can relate the space HomCSm(V m, V n) to the set Path(V m, V n).

Lemma 3.2. The following claims are true.

(1) The elements ϕP form a basis in HomCSm(V m, V n).
(2) Each ϕP is an eigenvector for Jk with eigenvalue wk for all k = m+ 1, . . . , n, where

(wm+1, . . . , wn) = wP .

Proof. (1): Thanks to (3.1), we have

HomCSm(V m, V n) =
⊕

V ′m∈Irr(Sm)

⊕
P∈Path(V ′m,V n)

Hom(V m, V ′m(P )) =
⊕

P∈Path(Vm,V n)

Hom(V m, V m(P )).

The first equality is thanks to the additivity of Hom, and the second is thanks to the Schur
lemma, see [1, Theorem 2.8(1)]. Now we use [1, Theorem 2.8(2)] to see that Hom(V m, V m(P )) ∼=
C. By the construction, ϕP is a nonzero element in this 1-dimensional space. (1) follows.
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(2): We have [JkϕP ](u) = Jk[ϕP (u)] for all u ∈ V m by (2.5). Note that ϕP (u) ∈ V m(P ).
By the very construction, V m(P ) lies in the copy of V k−1 inside V k for all k = m+ 1, . . . , n.
So Jk acts on V m(P ) by wk. Therefore JkϕP = wkϕP , which proves (2). �

When m = 1, we identify HomCS1(V
1, V n) = HomC(C, V n) with V n in the standard way.

For P ∈ Path(V n), we write vP for ϕP viewed as an element of V n. The following is a
straightforward corollary of Lemma 3.2.

Corollary 3.3. The following claims are true.

(1) The vectors vP for P ∈ Pathn form a basis in V n.
(2) Each vP is an eigenvector for Jk with eigenvalue wk for all k = 1, . . . , n.

Note that w1 = 0. This is because J1 =
∑0

i=1(i, 1) = 0.

Example 3.4. 1) Let V n = refln. By Example 2.11, we have a CSn−1-module decomposition
refln ∼= refln−1⊕ trivn−1 for n > 2, while for n = 2, we have refl2 = triv1. So Path(V n) has
n− 1 elements, and they are of the form

P = triv1 → . . . trivi → refli+1 → . . .→ refln .

The weight wP assigned to this path is (0, . . . , i − 1,−1, i, . . . , n − 2). Indeed, by Example
2.11, Jk acts on reflk−1 ⊂ reflk by k − 2 and on trivk−1 ⊂ reflk by −1. The vector vP is
proportional to (1, . . . , 1,−i, 0, . . . , 0), where we have i entries 1.

2) Let V = C2, the irreducible CS4-module of dimension 2. There are two elements in
Path(C2) and the weights are (0, 1,−1, 0) and (0,−1, 1, 0). This follows from 2) of Example
2.11 combined with 1) of the present example.

3) The sets Path(V n) and Path(V n ⊗ sgnn) are identified. Since all Jk are sums of trans-
positions, passing from V n to V n ⊗ sgnn multiplies these elements by −1. In particular all
weights get multiplied by −1.

We would also like to record the following corollary of the definitions of ϕP and vP .

Corollary 3.5. Let m < n, V m ∈ Irr(CSm), V n ∈ Irr(CSn). Choose P ∈ Path(V m), P ∈
Path(V m, V n) and let P ∈ Path(V n) be the concatenation PP . Then vP is proportional to
ϕP (vP ).

Proof. Both are nonzero vectors in the 1-dimensional subspace V 1(P ) ⊂ V n. �

3.2. Uniqueness of weights. The following result will be extremely important in our clas-
sification of irreducible representations of Sn and getting information about their bases.

Theorem 3.6. Let P, P ′ ∈ Pathn. If wP = wP ′, then P = P ′.

Before we prove the theorem, let us explain why it is important. We start with a defini-
tion/notation.

Definition 3.7. Let Wtn := {wP |P ∈ Pathn}. We say that two elements of Wtn are r-
equivalent (“r” for “representation”) if they are weights of two paths into the same irreducible
module.

Theorem 3.6 means that the map Pathn → Wtn (a priori, surjective) is a bijection. This
implies several things about the r-equivalence. First, the r-equivalence is indeed an equiv-
alence relation, and the equivalence classes are in bijection with the (isomorphism classes
of) irreducible representations. Indeed, the similar claims for the paths are a tautology
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and then we use Pathn
∼−→ Wtn. Second, the theorem implies that the basis vectors vP for

P ∈ Path(V n) are in bijection with the weights in the corresponding r-equivalence class.
After the theorem is proved our task is:

Task 3.8. To describe the set Wtn and the r-equivalence relation.

Proof of Theorem 3.6. The proof is by induction. The base, n = 1, is vacuous: there is
only one irreducible representation and it is 1-dimensional. Now suppose that we have
established the claim for n − 1. Let P , P ′ ∈ Pathn−1 be the truncations of P, P ′. If wP =
(w1, . . . , wn), wP ′ = (w′1, . . . , w

′
n), then wP = (w1, . . . , wn−1), wP ′ = (w′1, . . . , w

′
n−1). So,

wP = wP ′ and, by the inductive assumption, P = P ′. Let V, V ′ ∈ Irr(CSn) are the end-
points of P, P ′. It remains to show that V ∼= V ′. Let U ∈ Irr(CSn−1) be the end-point of
P = P ′.

The proof of V ∼= V ′ is as follows. We claim that every element z ∈ Zn−1(n) acts on
U ⊂ V, U ⊂ V ′ by scalars, denote them by χ(z), χ′(z), and, moreover, χ(z) = χ′(z). By
Theorem 2.9, the algebra Zn−1(n) is generated by Zn−1(n − 1) and Jn. So it is enough to
check the claim for z ∈ Zn−1(n − 1) and z = Jn separately. Any z ∈ Zn−1(n − 1) acts on
U by a scalar, [1, Exercise 2.12], and, tautologically, χ(z) = χ′(z) in this case. The element
Jn acts on both U embedded to V, V ′ by wn, by the construction of wn, and so we get
χ(Jn) = χ′(Jn) = wn.

Note that the center, Zn(n), of CSn is contained in Zn−1(n). Every element z ∈ Zn(n)
acts on V (resp., V ′) by a scalar, χV (z) (resp., χV ′(z)) (see [1, Exercise 2.12]). But χV (z) is
the same scalar by which z acts on U because U ⊂ V . We deduce χV (z) = χ(z) = χV ′(z) for
all z ∈ Zn(n). From [1, Corollary 2.26] we deduce that V ∼= V ′, which finishes the proof. �

3.3. Varying the path. In what follows we will address the following task that is a crucial
step in addressing Task 3.8. Suppose we have a path P = (V 1 → V 2 → . . . V n) ∈ Path(V n).
Pick an integer i with 1 6 i < n. Consider the set of all paths P ′ = (V ′1 → . . . V ′n−1 → V ′n)
such that V ′j = V j for j 6= i. Denote this set of paths by Path(P, i).

Task 3.9. Describe the possible weights wP ′ for P ′ ∈ Path(P, i).

Here is our main result related to Task 3.9.

Theorem 3.10. Let wP = (w1, . . . , wn). The following claims are true.

(1) wi 6= wi+1.
(2) If wi+1 = wi ± 1, then Path(P, i) = {P}.
(3) If wi+1 6= wi ± 1, then Path(P, i) consists of two elements P, P ′ and wP ′ is obtained

from wP by permuting the entries i and i+ 1.
(4) If i < n− 1 and wi = wi+1 ± 1, then wi+2 6= wi.

This theorem will be proved in Section 4.3 after some preparation.
The following result is one of the tools to prove Theorem 3.10. Consider the subalgebra

Zi−1(i + 1) ⊂ CSn. Set V := V n to simplify the notation. Let VP,i := SpanC(vP ′ |P ′ ∈
Path(P, i)). Note that by Corollary 3.3, the vectors vP ′ not just span, they form a basis of
VP,i.

Proposition 3.11. The subspace VP,i ⊂ V is a Zi−1(i + 1)-submodule. Moreover, it is
irreducible as a Zi−1(i+ 1)-module.

Proof of Proposition 3.11. Let we write P as the concatenation P0P1P2 with

P0 ∈ Path(V i−1), P1 ∈ Path(V i−1, V i+1), P2 ∈ Path(V i+1, V n).
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Then the paths in Path(P, i) are exactly the paths of the form P0P
′
1P2 with P ′1 ∈ Path(V i−1, V i+1).

Moreover, vP0P ′1P2
= ϕP2(ϕP ′1(vP0)) by Corollary 3.5.

Consider the linear map

(3.2) HomCSi−1
(V i−1, V i+1)→ V, ψ 7→ ϕP2(ψ(vP0)).

The map (3.2) sends ϕP ′1 to vP0P ′1P2
. The former elements form a basis in HomCSi−1

(V i−1, V i+1)
by Lemma 3.2, while the latter elements form a basis in VP,i. So (3.2) is injective with im-
age VP,i. Since HomCSi−1

(V i−1, V i+1) is an irreducible Zi−1(i+ 1)-module by Lemma 2.3, it
remains to show that (3.2) is Zi−1(i+ 1)-linear.

First of all, ϕP2 : V i+1 → V n is CSi+1-linear, and hence Zi−1(i+1)-linear since Zi−1(i+1) ⊂
CSi+1. So, it remains to show that the map

HomCSi−1
(V i−1, V i+1)→ V i+1, ψ 7→ ψ(vP0),

is Zi−1(i+ 1)-linear. But this is a direct consequence of (2.5). �

4. Degenerate affine Hecke algebra H(2)

Proposition 3.11 is not sufficient to prove Theorem 3.10 because at this point we don’t
know much about the algebra Zi−1(i+ 1). What we know is generators. We will determine
some relations between them. This will lead us to a new algebra, the degenerate double
affine Hecke algebra H(2). We will determine its irreducible representations and use this to
prove Theorem 3.9.

In more detail, thanks to Theorem 2.9, we know that Zi−1(i+1) is generated by Zi−1(i−1),
a central subalgebra, and three more elements: Ji, Ji+1, (i, i + 1). In this section, we will
examine some relations between these three generators arriving at the definition of the
degenerate affine Hecke algebra H(2). Using Proposition 3.11 we will see that the space VP,i
will be an irreducible representation of this algebra. Then we will study finite dimensional
irreducible representations of H(2). Theorem 3.9 will easily follow from this.

4.1. Definition of H(2).

Lemma 4.1. We have the following identities

(4.1) JiJi+1 = Ji+1Ji, (i, i+ 1)2 = 1, (i, i+ 1)Ji = Ji+1(i, i+ 1)− 1.

Proof. The element Ji+1 commutes with CSi and hence with Ji ∈ CSi. This gives the first
relation. The second relation is obvious. The third relation is equivalent to (i, i+ 1)Ji(i, i+
1) = Ji+1−(i, i+1) – multiply by (i, i+1) on the right. The left hand side is the conjugation

of Ji by (i, i+ 1) hence equals
∑i−1

j=1(j, i+ 1). This equals Ji+1 − (i, i+ 1). �

Define the degenerate affine Hecke algebra H(2) by generators X1, X2, T and relations that
mirror those found in Lemma 4.1:

(4.2) X1X2 = X2X1, T
2 = 1, TX1 = X2T − 1.

There is a consequence of these relations:

(4.3) X1T = TX2 − 1.

To see this we multiply the third relation in (4.2) by T both from the left and from the right
and use the second relation.

Our conclusion is that we have a unique algebra homomorphism H(2)→ Zi−1(i+1) given
on generators by X1 7→ Ji, X2 7→ Ji+1, T 7→ (i, i + 1). In particular, any Zi−1(i + 1)-module
can be viewed as an H(2)-module.
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Corollary 4.2. Let M be an irreducible Zi−1(i+ 1)-module. Then it stays irreducible as an
H(2)-module.

Proof. Recall, Section 2.2, that Zi−1(i + 1) is a central subalgebra of Zi−1(i + 1). By [1,
Exercise 2.12], every element of the center acts by a scalar on an irreducible Zi−1(i + 1)-
module. In particular, every subspace in M is stable under Zi−1(i−1). Since the subalgebra
Zi−1(i − 1) and the elements Ji, Ji+1, (i, i + 1) generate the algebra Zi−1(i + 1), a subspace
in M is a Zi−1(i+ 1)-submodule if and only if it is stable under Ji, Ji+1, (i, i+ 1). The latter
condition is equivalent to being a H(2)-submodule. This finishes the proof. �

Remark 4.3. One can ask why we picked these relations. In fact, one can show that (4.2)
are the only relations between Ji, Ji+1, (i, i + 1) that are independent of i, in some precise
sense.

One can also ask how the algebra H(2) looks like, e.g., what a vector space basis is. An
easy consequence of the relations is that the monomials of the form Xd1

1 X
d2
2 σ for σ ∈ {1, T}

span H(2). In fact, one can further show that these monomials form a basis.

Remark 4.4. We can generalize this construction and, for d > 1, produce the degenerate
affine Hecke algebra H(d) with a homomorphism to Zi(i+ d). Define H(d) as the C-algebra
generated by X1, . . . , Xd, T1, . . . , Td−1 with the following relations

XiXj = XjXi,

T 2
i = 1, TiTj = TjTi, for |i− j| > 1, TiTi+1Ti = Ti+1TiTi+1,

XiTj = TjXi, for i− j 6= 0, 1, TiXi = Xi+1Ti − 1.

The motivation for the relations in the second row is that the transpositions (i, i + 1) ∈
Sd, i = 1, . . . , d − 1, satisfy these relations. Moreover, the group generated by T1, . . . , Td−1
with these relations is the symmetric group Sd. This can be checked in an elementary way,
but there is also a nice topological proof, [Ka, Exercise 3.10].

One can show that we have an algebra homomorphism H(d) → Zi(i + d) with Xj 7→
Ji+j, Tj 7→ (i+ j, i+ j + 1), left as an exercise.

4.2. Finite dimensional irreducible representations of H(2). Let us classify the finite
dimensional irreducible H(2)-modules M (in fact, all irreducible modules over this algebra
are finite dimensional, but we will not need this fact).

Since X1, X2 commute, they have a common eigenvector m ∈M . Let X1m = am,X2m =
bm, where a, b ∈ C.

Let us consider two cases:
Case 1. Tm is proportional to m. Since T 2 = 1, we have two options:
1.1) Tm = m. Let us apply the third relation in (4.2) to m. The left hand side gives

TX1m = am, while the right hand side gives (X2T − 1)m = (b− 1)m, so here b = a+ 1.
1.2) Tm = −m. Similarly to the previous case, we get b = a− 1.
Case 2. m and Tm are linearly independent. Let us see how X1, X2 act on Tm:

X1(Tm) = [X1T = TX2 − 1] = TX2m−m = b(Tm)−m,
X2(Tm) = [X2T = TX1 + 1] = TX1m+m = a(Tm) +m.

In particular, we see that Span(m,Tm) is stable under H(2). Since M is irreducible, we see
that m and Tm form a basis in M . In this basis, we have

(4.4) T 7→
(

0 1
1 0

)
, X1 7→

(
a 0
−1 b

)
, X2 7→

(
b 0
1 a

)
.
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The matrices in (4.4) satisfy the defining relations of X1, X2, T for all a, b ∈ C. So (4.4)
defines an H(2)-module structure on C2, to be denoted by M(a, b). We conclude that M
must be isomorphic to M(a, b).

Lemma 4.5. The module M(a, b) is irreducible if and only if a 6= b ± 1. Moreover, if
a 6= b± 1, then M(a, b) ∼= M(a′, b′) if and only if (a, b) = (a′, b′) or (b, a) = (a′, b′).

Proof. Assume, first, a 6= b (the only case we will need). In this case, by (4.4) X1, X2

both have distinct eigenvalues, so act on M(a, b) by diagonalizable operators. But X1, X2

commute, so they are simultaneously diagonalizable. Therefore there is another eigenvector
with eigenvalue b for X1 and a for X2. Since a 6= b, every subspace of M(a, b) stable under X1

(or X2) must be the sum of some of the eigenspaces. If this subspace is a proper submodule,
then T must preserve it. This implies a = b± 1 by the analysis of Case 1 above. Conversely,
if a = b ± 1, then m ∓ Tm is an eigenvector for X1, X2, T , hence spans a submodule. This
implies that M(a, b) is not irreducible. Our conclusion is that M(a, b) is irreducible if and
only if a 6= b± 1.

Since M(a, b) also contains a vector with eigenvalues (b, a), we get M(a, b) ∼= M(b, a) by
the analysis before the lemma. And if (a′, b′) is different from both (a, b) and (b, a), then
M(a′, b′) 6∼= M(a, b) as the eigenvalues of X1 on the left hand side are different from a, b.

Note that when a = b, the operators X1, X2 on M(a, b) are not diagonalizable. This case
is left as an exercise. �

We arrive at the following classification result.

Proposition 4.6. The finite dimensional irreducible H(2)-modules are classified by pairs of
complex numbers, (a, b) 7→ L(a, b), with L(a, b) ∼= L(b, a) if b 6= a, a± 1. The pair (a, b) is a
pair of simultaneous eigenvalues of X1, X2 in L(a, b). Moreover, the following is true.

(1) If b = a+ 1, then L(a, b) = C with T 7→ 1, X1 7→ a,X2 7→ b.
(2) If b = a− 1, then L(a, b) = C with T 7→ −1, X1 7→ a,X2 7→ b.
(3) If b 6= a± 1, then L(a, b) ∼= M(a, b) from (4.4).
(4) The action of X1, X2 on L(a, b) is diagonalizable if and only if a 6= b.

Remark 4.7. One can also ask how to classify the irreducible H(d)-modules and compute
their dimensions. This is no longer elementary, and may be mentioned later in the course
when we discuss the category O.

4.3. Proof of Theorem 3.10.

Proof. Let wP = (w1, . . . , wn) and P ′ ∈ Path(V, i) with wP ′ = (w′1, . . . , w
′
n). By the con-

struction of w′j in Section 3.1, w′j depends only on Vj−1, Vj (and w′1 = 0). Since V ′j = Vj for
all j 6= i, we see that w′j = wj for j 6= i, i + 1. Recall that VP,i is an irreducible Zi−1(i + 1)-
module, Proposition 3.11, and hence also an irreducible H(2)-module, Corollary 4.2. The
elements X1, X2 act as Ji, Ji+1 on VP,i and hence both are diagonalizable, Corollary 3.3.
The pairs (wi, wi+1), (w

′
i, w

′
i+1) are pairs of simultaneous eigenvalues for X1, X2 acting on the

irreducible H(2)-module VP,i. Now (1)-(3) of the theorem follow from Proposition 4.6.
Let us prove (4): if wi+1 = wi ± 1, then wi+2 6= wi. Since wi+1 = wi ± 1, by part (2), the

space VP,i is 1-dimensional. If wi+2 = wi = wi+1 ∓ 1, then VP,i+1 is also 1-dimensional. It
follows that CvP is stable under both transpositions (i, i+ 1), (i+ 1, i+ 2). By Proposition
4.6, (i, i+ 1) acts on CvP by ±1, while (i+ 1, i+ 2) acts by ∓1. But

(i, i+ 1)(i+ 1, i+ 2)(i, i+ 1) = (i, i+ 2) = (i+ 1, i+ 2)(i, i+ 1)(i+ 1, i+ 2)
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and, so, by looking at how this element acts on vP , we arrive at ∓1 = ±1, which gives a
contradiction. �

5. Completion of classification

In this section we will finish the classification of finite dimensional irreducible CSn-
modules. The two main ingredients are Theorem 3.10 and the basic observation that the
number of irreducibles is the same as the number of partitions of n. Then we will give a
combinatorial parametrization of a basis in a given irreducible module.

5.1. Combinatorial weights. Motivated by part (3) of Theorem 3.10 we are going to define
an equivalence relation on Cn. By an admissible transposition of Cn we mean a transposition
of two adjacent entries if their difference is not ±1.

Definition 5.1. We say that two elements of Cn are c-equivalent (“c” for “combinatorial”)
if one is obtained from the other by a sequence of admissible transpositions. This is an
equivalence relation to be denoted by ∼c. By a combinatorial weight we mean an element
of Cn such that every combinatorially equivalent to it element (w1, . . . , wn) satisfies the
following three conditions:

(i) w1 = 0.
(ii) For any i = 1, . . . , n− 1, we have wi 6= wi+1.

(iii) For any i = 1, . . . , n− 2, we have that if wi+1 = wi ± 1, then wi+2 6= wi.

The set of combinatorial weights is denoted by cWtn.

Here is a consequence of Theorem 3.10.

Corollary 5.2. The following claims hold:

(1) We have Wtn ⊂ cWtn. Moreover, Wtn is the union of c-equivalence classes.
(2) c-equivalence implies r-equivalence (recall, Definition 3.7, that two weights are r-

equivalent if the corresponding paths lead to the same irreducible module).

We will write X/ ∼ for the set of equivalence classes in a set X for an equivalence relation
∼ and | • | for the cardinality of a set, possibly infinite. Thanks to Corollary 5.2, we have

(5.1) |Wtn/ ∼r | 6 |Wtn/ ∼c | 6 |cWtn/ ∼c |,
where the first inequality follows from (2), and the second inequality follows from (1).

Recall, see the discussion after Definition 3.7 that Wtn/ ∼r is in bijection with Irr(CSn).
In particular, the number of elements coincides with the number of partitions of n.

Lemma 5.3. Every c-equivalence class contains an element of the form

(0, 1 . . . , n1 − 1,−1, . . . , n2 − 2,−2, . . . , n3 − 3, . . . , 1− k, . . . nk − k)

for some positive integers n1 > n2 > . . . > nk with n1 . . .+ nk = n.

This lemma combined with (5.1) imply that |cWtn/ ∼c | does not exceed the number of
partitions of n. So, once the lemma is proved, it implies that

• cWtn = Wtn.
• ∼c=∼r.
• The numbers n1, . . . , nk in the lemma are uniquely read of the equivalence class.

In particular, to V ∈ Irr(CSn) we can assign the partition (n1, n2, . . . , nk) of n. Our conclu-
sion is that this gives a bijection between Irr(CSn) and the set of partitions of n.
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Example 5.4. In this example we re-examine partitions corresponding to three of the five
irreducible representations of S4: the trivial, the reflection, and the 2-dimensional represen-
tations, compare to Example 1.1.

1) Consider the trivial representation triv4. It has only one weight, (0, 1, 2, 3), so k = 1
and n1 = 4. The partition is (4).

2) Consider the reflection representation refl4. It has three weights, see Example 3.4:
(0,−1, 1, 2), (0, 1,−1, 2), (0, 1, 2,−1). The latter is of the form described in Lemma 5.3. So
k = 2, n1 = 3, n2 = 1 and the partition is (3, 1).

3) For the irreducible representation C2, the weights are (0, 1,−1, 0) and (0,−1, 1, 0),
Example 3.4. The former is of the form described in Lemma 5.3 and the corresponding
partition is (2, 2).

Proof of Lemma 5.3. Note that all components of a combinatorial weight (w1, . . . , wn) are
integers. Indeed, let i be the minimal number with wi 6∈ Z. Then there is an obvious
collection of admissible transpositions that moves wi to the 1st position, giving a con-
tradiction. So, we can consider the lexicographic order on an equivalence class in cWtn:
(w1, . . . , wn) > (w′1, . . . , w

′
n) if there is i such that w1 = w′1, . . . , wi−1 = w′i−1 and wi > w′i.

Let (w1, . . . , wn) be a maximal element in its equivalence class. We claim that it has the
form described in the lemma.

Step 1. Let n1 be such that n1 − 1 = max(wi). Let k be the smallest index such that
wk = n1 − 1. We claim that k = n1 and wi = i − 1 for all i < n1. Indeed, assume the
contrary, and pick the largest index j < k with wj 6= n1 − 1− (k − j). We have wj < n1 by
the choice of k. We have wj > j−1. Otherwise, permuting the entries numbered j and j+1
gives an admissible transposition that increases (w1, . . . , wn) in the lexicographic order. But
if wj > j, then we can perform a sequence of admissible transpositions to move wj to the
left until we either arrive at one of the fragments (wj, wj) or (wj, wj ± 1, wj) or place wj 6= 0
into the 1st position, which is impossible. So wj = n1 − 1 − (k − j) for all j < k. Since
w1 = 0, we get k = n1.

Step 2. If n1 = n, then we are done. If not, we claim wn1+1 = −1. Assume the contrary.
We have wn1+1 6 n1 − 1 by the choice of n1. Further, we have wn1+1 6= n1 − 1 because
otherwise wn1 = wn1+1, which is impossible. So we can start moving the entry wn1+1 to the
left by a sequence of admissible transpositions. This will end either when we encounter the
fragment (wn1+1, wn1+1+1, wn1+1), which happens for wn1+1 > 0 and lead to a contradiction,
or when we place wn1+1 in the first slot, which happens when wn1+1 < −1, and also leads to
a contradiction.

Step 3. Then we repeat the argument of Step 1 and see that w starts with (0, 1, . . . , n1 −
1,−1, 0, . . . , n2− 2) for n2 + 2 6 n1 + 1. Next, we repeat the argument of Step 2 to see that
the next element is −2, etc. �

5.2. Young diagrams and Young tableaux. The previous section gives a combinatorial
classification of Irr(CSn) – by the partitions of n – and also a combinatorial parametrization
of basis elements – in terms of combinatorial weights. In this section we will make the latter
parametrization more explicit – and more classical – by establishing a bijection between the
combinatorial weights and the standard Young tableaux.

Partitions of n that are often depicted as Young diagrams, the following diagram corre-
sponds to the partition 5 = 3 + 2.



CHAPTER 1: REPRESENTATIONS OF SYMMETRIC GROUPS 17

The advantage of this description is that we can fill the boxes with numbers. Our goal is
to relate Wtn = cWtn to the set of standard Young tableaux (SYT) SYT(n). Recall that a
standard Young tableau on a Young diagram with n boxes is a filling of this diagram with
numbers from 1 to n that strictly increase bottom to top and left to right (in particular, each
number occurs exactly once). The underlying Young diagram of an SYT T will be called
the shape of T . For example, these two fillings are examples of SYT’s of shape (3, 2).

(5.2)
1 2 3

4 5

1 2 4

3 5

Definition 5.5. To a Young tableau T we assign its content as follows. Let (xi, yi) be the
coordinate of the box numbered by i. By its content we mean the difference xi − yi. The
content c(T ) of T is, by definition, the collection of contents of the individual boxes, i.e.,
(x1 − y1, x2 − y2, . . . , xn − yn).

The following two collections are contents of the tableaux in the previous example: (0, 1, 2,−1, 0)
and (0, 1,−1, 2, 0). In other words, we record the diagonals where the boxes of T lie.

Exercise 5.6. Show that the map T 7→ c(T ) is injective and explain how to recover T from
c(T ).

Proposition 5.7. The map T 7→ c(T ) is a biijection SYT(n) → cWt(n), moreover, the
shape of T coincides with the partition assigned to c(T ) in Lemma 5.3.

Proof. We can define an admissible transposition of entries i and i + 1 in a tableau T : we
permute i and i + 1 if the result is still a SYT. For example, the two tableaux above are
obtained from one another by permuting 3 and 4.

The admissible permutations give rise to an equivalence relation ∼c on SYT(n). It is easy
to see that an admissible permutation of k, k+ 1 in T corresponds exactly to the admissible
permutation of entries numbered k and k + 1 in c(T ). The collection c(T ) = (c1, . . . , cn)
satisfies conditions (i)-(iii) of Definition 5.1. For example, let us check (iii). The condition
ci = ci+2 means that the numbers i, i + 2 appear on the same diagonal in T . Consider the
square in T with the bottom left corner containing i and the top right corner containing i+2
(it is in this order by the definition of a SYT). The remaining elements inside the square
are strictly between i and i+ 2, and there are, at least, two of them. Since all elements are
distinct, we arrive at a contradiction.

So c(T ) is indeed an element of CWt(n) and the image of c is the union of equivalence
classes for ∼c.

We can define normal SYT’s, where we fill the first row by numbers from 1 to some n1,
then the second row by the numbers from n1+1 to n1+n2, etc., for example, the first tableau
in (5.2) is normal. Clearly, if T is normal, then c(T ) is of the form described in Lemma 5.3.
From this lemma it follows that c is surjective. On the other hand, c is injective, Exercise
5.6.
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The argument in the beginning of the previous paragraph also implies that the shape of
T is the Young diagram corresponding to the partition assigned to the equivalence class of
c(T ). �

Now we can restate Corollary 3.3 in the language of SYT.

Corollary 5.8. Let λ be a Young diagram with n boxes and Vλ be the corresponding irre-
ducible CSn-module. There is a basis, vT , in Vλ labelled by SYT’s T of shape λ. Moreover,
each vT is an eigenvector for the Jucys-Murphy elements Ji, i = 1, . . . , n. The eigenvalue of
Ji on vT is the content of the box labelled i in T .

We finish this section by giving a combinatorial description of the branching graph from
Section 3.1. Let (w1, . . . , wn) ∈ Wtn and let T be the corresponding SYT. Let T ′ denote
the SYT corresponding to (w1, . . . , wn−1). Then T ′ is obtained from T by removing the box
labelled n. Note that n is located in a corner box, i.e., a box with nothing above or the right.
And for any Young diagram and any corner box, we can find a SYT with n in that box.

Here is a corollary of this discussion.

Corollary 5.9. Let λ be a partition of n and Vλ be the corresponding irreducible module over
CSn. As a CSn−1-module, Vλ decomposes as

⊕
µ Vµ, where µ runs over all Young diagrams

obtained from λ by removing a box. Moreover, Jn acts on Vµ by the scalar equal to the content
of the removed box.

For example, if λ = (3, 2), then there are two summands, corresponding to the partitions
(3, 1) and (2, 2). The corresponding eigenvalues of J5 are 0 and 2, respectively.

Definition 5.10. By the Young graph we mean a directed graph whose vertices are Young
diagrams and we have an edge µ → λ if and only if µ is obtained from λ by removing one
box.

Corollary 5.11. Under our identification of
⊔
n>1 Irr(CSn) with the set of Young diagrams,

the branching graph becomes the Young graph.

Finally, we give a combinatorial description of tensoring with sgnn.

Exercise 5.12. Show that tensoring with the sign representation corresponds to transposing
the Young diagram (about the main diagonal; for example for the partition (3, 1) its transpose
is (2, 12)).

6. Complements

6.1. Further results. Once the irreducible representations are classified one can ask to
compute their characters. And once we have a basis one can ask to describe how the elements
of Sn, or, at least, generators, act on basis elements. The latter is actually quite easy with
the approach we have discussed so we start with that.

6.1.1. Action of generators. Let λ be a partition of n and Vλ be the corresponding irreducible
representation of Sn. We have a basis in Vλ labelled by the standard Young tableaux of shape
λ, Corollary 5.8. Let vT denote a basis element labeled by a SYT T . We emphasize that vT
is defined uniquely up to a scalar factor. Let w = (w1, . . . , wn) be the weight of vT , i.e., the
content of T .

The symmetric group Sn is generated by the transpositions (i, i+ 1) for i = 1, . . . , n− 1.
We want to understand how (i, i+1) acts on vT . For this we recall that (i, i+1) ∈ Zi−1(i+1)
and
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(a) either CvT is a Zi−1(i+ 1)-submodule
(b) or there is another SYT, say T ′, such that SpanC(vT , vT ′) is a Zi−1(i+ 1)-submodule,

Theorem 3.10.

(a) happens when we cannot permute i, i + 1 in T . In terms of weights, this means wi+1 =
wi ± 1, or, equivalently, in T the number i + 1 is next to the right of i, the case when
wi+1 = wi + 1, or right above i, the case when wi+1 = wi − 1. (b) happens when we
can permute i, i + 1 inside of T , and T ′ is the SYT obtained by this permutation. Using
Proposition 4.6 we conclude

• (i, i+ 1)vT = vT if wi+1 − wi = 1,
• (i, i+ 1)vT = −vT if wi+1 − wi = −1,
• (i, i+ 1)vT = avT + bvT ′ with b 6= 0 if wi+1 − wi 6= ±1.

Note that b is not defined uniquely as both vT and vT ′ can be independently rescaled. But
a is determined uniquely.

Exercise 6.1. Prove that a = (wi+1 − wi)−1.

In fact, we can normalize the vectors vT such that in the above formulas we can set
b =
√

1− a2, see [Kl, Proposition 2.3.5]. One can also normalize so that all coefficients b
are rational numbers, [Kl, Theorem 2.3.1]. From here one can deduce that all irreducible
representations of Sn are defined over Q, equivalently, that QSn is isomorphic to the direct
sum of matrix algebras over Q (and not some skew-fields).

6.1.2. Frobenius character formula. Now we discuss the character of Vλ. The most famous
result here is the Frobenius character formula relating the characters of representations of
Sn to symmetric polynomials, see, e.g., [E, Section 5.15] or [F, Section 7.3]. It is not directly
related to the inductive approach that we took to study the irreducible representations but
the connection between irreducible representations of Sn and the symmetric polynomials is
so important that we cannot bypass it.

We start by explaining the notion of the Frobenius character. Fix N > n. For d > 0, we
can consider the power symmetric polynomial in N variables: pm =

∑N
i=1 x

d
i . Now take a

permutation σ ∈ Sn and let (n1, . . . , nk) be the corresponding permutation, where the entries
are the lengths of cycles in σ. Let pσ = pn1pn2 . . . pnk . For example, p1 = (x1 + . . . + xN)n.
Note that pσ = pσ′ if and only if σ and σ′ correspond to the same permutation, i.e., are
conjugate. So, for a conjugacy class c in Sn we write pc for pσ with σ ∈ c.

Definition 6.2. Let V be a finite dimensional FSn-module and χV : Sn → C be its character.
By the Frobenius character FV we mean the symmetric polynomial

FV (x1, . . . , xN) =
1

n!

∑
σ∈Sn

χV (σ)pσ.

It is easy to show that, since N > n, the elements pc form a basis in the space of symmetric
polynomials of degree n. So one can recover the usual character from the Frobenius character.

Before we proceed we should explain the dependence on N . We note that FV (x1, . . . , xN)
is obtained from FV (x1, . . . , xN+1) by setting xN+1 = 0. So, to make things more convenient,
people talk about symmetric polynomials in infinitely many variables, they are infinite sums.
We are not going to do this.

Here is the crucial property of F•. Let Vn, Vm be representations of Sn, Sm respectively.
We can view their tensor product as a representation of Sn×Sm: (σ, τ)(u⊗v) = (σu)⊗(τv).
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Then we can induce to Sn+m. Let

Vn+m = Ind
Sn+m
Sn×Sm(Vn ⊗ Vm).

Proposition 6.3. Suppose N > n+m. We have FVn+m = FVnFVm.

Proof. Let H ⊂ G be finite groups, and U be a finite dimensional CH-module, let χU denote
its character. Set V := IndGH U . The Frobenius formula for the character of an induced
module, [E, Section 5.9], says that

χV (g) = |H|−1
∑

x∈G|xgx−1∈H

χU(xgx−1),

the proof is not hard, the readers can do this as an exercise. So, in our situation, the
coefficient of pc in FVn+m is

(6.1)
1

(n+m)!n!m!

∑
σ∈c

∑
x∈Sn+m|xσx−1∈Sn×Sm

χVn⊗Vm(xσx−1)

Let c′ := c ∩ (Sn × Sm), this is the union of conjugacy classes in Sn × Sm. Note that
if σ′ = (σ1, σ2) for σ1 ∈ Sn, σ2 ∈ Sm, then χVn(σ1)χVm(σ2) = χVn⊗Vmσ

′. Therefore, the
coefficient of pc in

FVnFVm =
1

n!m!

∑
σ1∈Sn,σ2∈Sm

χVn(σ1)χVm(σ2)pσ1pσ2

equals

(6.2)
1

n!m!

∑
σ′∈c′

χVn⊗Vm(σ′).

Let c′ = c′1 t c′2 t . . . t c′` be the decomposition into Sn × Sm-conjugacy classes. For
i = 1, . . . , `, let χi be the common value of χVn⊗Vm on the elements of c′i. Then we can
rewrite (6.1) as

(6.3)
1

(n+m)!n!m!

∑̀
i=1

|{(σ, x) ∈ c× Sn+m|xσx−1 ∈ c′i}|χi,

while (6.2) can be rewritten as

(6.4)
1

n!m!

∑̀
i=1

|c′i|χi.

We reduce to proving that

|{(σ, x) ∈ c× Sn+m|xσx−1 ∈ c′i}| = (n+m)!|c′i|
The right hand side is the cardinality of the set c′i × Sn+m. We have a bijection

{(σ, x) ∈ c× Sn+m|xσx−1 ∈ c′i}
∼−→ c′i × Sn+m, (σ, x) 7→ (xσx−1, x).

This implies that (6.3) and (6.4) coincide and finishes the proof. �

It turns out that FVλ is the so called Schur polynomial sλ. There are several ways to
define it. For example, let λ = (n1 > n2 > . . . > nk) be a partition of n. Fix N >
n. We can assume k = N by adjoining zero parts to (n1, . . . , nk). Then the polynomial
det(xni+N−ij )Ni,j=1 is sign-symmetric (if we permute x1, . . . , xN according to a permutation
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π ∈ SN , then the polynomial gets multiplied by sgn(π)). Therefore it is divisible by the
Vandermonde determinant

det(xN−ij )Ni,j=1 =
∏
i<j

(xi − xj).

The ratio is a symmetric polynomial.

Definition 6.4. This ratio is called the Schur polynomial and is denoted by sλ.

For an alternative description, see [F, Section 4.3]. The following result is in (2) of the
theorem in [F, Section 7.3]. Note that Fulton defines FV differently but his definition agrees
with ours, see equation (12) in [F, Section 7.3].

Theorem 6.5. We have FVλ = sλ.

This theorem is also equivalent to [E, Theorem 5.15.1].

6.1.3. Murnaghan-Nakayama rule. Theorem 6.5 is not directly deduced using the inductive
approach to the representations of symmetric groups that we were pursuing. But there
is a character formula that follows relatively easily from our approach: the Murnaghan-
Nakayama rule. The reader is referred to [Kl, Section 2.3], in particular, Theorem 2.3.6 and
Corollary 2.3.7 there.

6.2. Irreducible representations of An. Here we will explain how to reduce the study of
the irreducible representations of An to those of Sn. Here is the result.

Theorem 6.6. Let Vλ denote the irreducible CSn-module corresponding to a partition λ.
Then the following claims are true:

(1) If λ is different from its transpose, λt, then Vλ is irreducible as a module over CAn.
(2) If λ coincides with its transpose, then Vλ decomposes into the sum of two non-

isomorphic CAn-modules permuted by any odd permutation.
(3) Moreover, every irreducible CAn-module appears in Vλ and λ is defined uniquely up

to taking the transpose.

The moral reason why the transpose should play a role is that Vλ ⊗ sgnn
∼= Vλt , Exercise

5.12, and the sign representation restricts to the trivial representation of An.
The proof is based on understanding the induction from An to Sn. Recall that An is

a normal subgroup of index 2 in Sn. Also recall, [1, Section 3.5], that the induction for
representations of groups can be understood as follows: for a pair of finite groups H ⊂ G
and a representation U of H, the induced representation IndGH(U) is realized as

FunH(G,U) := {f : G→ U |f(hg) = hf(g),∀h ∈ H, g ∈ G, },
where the action of G is given by [g.f ](g′) = f(g′g−1).

Here is a key lemma that will be used to prove Theorem 6.6.

Lemma 6.7. Suppose H is normal in G. Let V be a representation of G viewed as a
representation of H. Then we have

(6.5) IndGH(V )
∼−→ IndGH(triv)⊗ V.

Proof. We have IndGH(triv) ⊗ V ∼= {f : G → V |f(hg) = f(g)} with action of G on the

right hand side given by [g.f ](g′) = gf(g′g−1). An isomorphism (6.5) is given by f 7→ f̃ with

f̃(g′) = g′−1f(g′). To check that this map is an isomorphism onto {f : G→ V |f(hg) = f(g)}
and is G-equivariant is left as an exercise. �
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Proof of Theorem 6.6. The proof is in several steps.
Step 1. We claim that IndSnAn(triv) ∼= trivn⊕ sgnn. Indeed, IndSnAn(triv) is the module of

functions on Sn/An. It has the basis e+, e− of characteristic functions of An and Sn \ An.
For a permutation σ we have σe± = esgn(σ)±. So e+ + e− spans the trivial representation,
while e+ − e− spans the sign representation.

Step 2. By Frobenius reciprocity, [1, Corollary 3.13], for two partitions λ, µ of n we have

(6.6) HomAn(Vλ, Vµ) = HomSn(Vλ, IndSnAn(Vµ)).

Further, we get

IndSnAn(Vµ) ∼= IndSnAn(trivn)⊗ Vµ ∼= (trivn⊕ sgnn)⊗ Vµ = Vµ ⊕ Vµt .

Here the first isomorphism follows from Lemma 6.7, the second follows from Step 1, and the
third, where we write µt for the transpose of µ, follows from Exercise 5.12. We conclude
that the left hand side of (6.6) is

• zero, if λ 6= µ, µt.
• 1-dimensional, if λ = µ or µt, and µ 6= µt,
• 2-dimensional, if λ = µ = µt.

Step 3. Apply the conclusion of Step 2 to λ = µ. If λ 6= λt, then EndCAn(Vλ) is 1-
dimensional. For a completely reducible module, to have the 1-dimensional endomorphism
space is equivalent to being irreducible. This shows (1). Similarly, if λ = λt, then Vλ
decomposes into the direct sum of two pairwise non-isomorphic CAn-modules. Any odd
permutation sends an irreducible CAn-submodule of Vλ, say U , to an irreducible submodule,
that must be different from U because U is not Sn-stable. This shows (2).

Step 4. Now we show (3). Similarly to Step 3, we see that for µ 6= λ, λt, the CAn-modules
Vλ, Vµ do not contain common irreducible summands. This establishes the uniqueness part
of (3). It remains to show that every irreducible CAn-module U arises in the construction of
Step 3, this is the existence part. Consider the CSn-module V := IndSnAn(U). By Frobenius
reciprocity,

HomAn(V, U)
∼−→ HomSn(V, V ).

The target is nonzero, hence so is the source. So U must appear in some irreducible CSn-
submodule of V , which finishes the proof. �

6.3. Induction. In this section we will discuss the induction from Sn−1 to Sn, we write
Indnn−1 for IndSnSn−1

. Let µ be a partition of n − 1 and λ be a partition of n. Let Vµ, Vλ be
the corresponding irreducible modules over CSn−1 and CSn. By the Frobenius reciprocity,
[1, Corollary 3.13], we have

HomCSn(Indnn−1 Vµ, Vλ)
∼= HomCSn−1(Vλ, Vµ).

Here we use the realization of Indnn−1 Vµ as CSn ⊗CSn−1 Vµ and the isomorphism from the
left hand side to the right hand side is given by restricting to Vµ = CSn−1 ⊗CSn−1 Vµ ⊂
CSn ⊗CSn−1 Vµ. The modifications for the other realization of the induction (as the right
adjoint of the restriction) are left as an exercise.

By Corollary 5.9, the right hand side is 1-dimensional if µ is obtained from λ by removing
a box, and is zero else. We arrive at the following result.

Lemma 6.8. We have Indnn−1 Vµ =
⊕

λ Vλ, where the summation is over all Young diagrams
obtained from µ by adding a box.
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For example, if µ = (2, 2), then we have two summands in the right hand side, they
correspond to the partitions (3, 2) and (2, 2, 1).

It turns out that the element Jn gives rise to an endomorphism of the CSn-module Indnn−1 U
for any CSn−1-module U so that, for U = Vµ, the irreducible summands of Indnn−1 Vµ are its
eigenspaces.

Consider a more general situation. Let H ⊂ G be finite groups and Z := ZCH(CG). Let
U be a CH-module. Recall that, by the construction, IndGH U = CG ⊗CH U . For z ∈ Z,
define the operator z∗ on this space by

z∗(a⊗ u) = (az)⊗ u.
Note that since z commutes with CH, this operator is well-defined. Moreover, it commutes
with the G-action because the action of G because it is by left multiplications on the first
tensor factor. We also remark that (z1z2)

∗ = z∗2z
∗
1 for z1, z2 ∈ Z, so IndGH U becomes a right

Z-module.
We note that for any CH-module U and CG-module V , the algebra Z acts on HomH(U, V )

as explained in Remark 2.5. It also acts on HomG(IndGH U, V ): zϕ := ϕ ◦ z∗. Both
HomH(U, V ) and HomG(IndGH U, V ) become left Z-modules.

Lemma 6.9. The isomorphism HomG(IndGH U, V )→ HomH(U, V ) is Z-linear.

Proof. The isomorphism is given by restricting ϕ : IndGH U → V to U ↪→ CG⊗CHU, u 7→ 1⊗u.
We write ϕ′ for the restriction. Then

[zϕ]′(u) = [zϕ](1⊗ u) = ϕ(z ⊗ u) = zϕ(1⊗ u) = z(ϕ′(u)) = [zϕ′](u),

where the third equality holds because ϕ is CG-linear. So [zϕ]′ = z[ϕ′], and we are done. �

Now take G = Sn, H = Sn−1. Take z = Jn.

Corollary 6.10. Let λ, µ be two diagrams with n and n− 1 boxes respectively. Suppose µ is
obtained from λ by removing a box (so that, by Lemma 6.8, Vλ is a direct summand of the
CSn-module Indnn−1 Vµ). Then J∗n acts on Vλ by a scalar and that scalar is the content of the
box removed from λ to get µ.

Proof. By Lemma 6.9, the isomorphism HomSn−1(Vµ, Vλ)
∼−→ HomSn(Indnn−1 Vµ, Vλ) inter-

twines the operators on these (1-dimensional) spaces induced by Jn. The action of Jn on
HomSn−1(Vµ, Vλ) is by the same scalar as the action of Jn on the copy of Vµ inside Vλ. Since
J∗n is an endomorphism of the CSn-module Indnn−1 Vµ, and every irreducible there occurs
with multiplicity 1, the operator J∗n acts on every irreducible summand, including Vλ, by a
scalar – compare to the proof of (3) of Corollary 2.10. This scalar is the same as the scalar
by which Jn acts on HomSn(Indnn−1 Vµ, Vλ). This finishes the proof. �

Remark 6.11. It is very useful to revisit the construction of the present section from a
more categorical perspective. We have used a natural isomorphism

(6.7) HomCSn(Indnn−1 U, V )
∼−→ HomCSn−1(U, V ),

i.e., that the induction functor Indnn−1 : CSn−1 -mod → CSn -mod is left adjoint to the
restriction functor CSn -mod → CSn−1 -mod, to be denoted by Resn−1n . Both functors are
C-linear (meaning that they respect the C-vector space structure on the Hom sets) and
the adjunction is C-linear as well meaning that (6.7) is an isomorphism of vector space
rather than just a bijection of sets. The endomorphisms of a C-linear functor naturally form
an (associative, unital) C-algebra. And the adjunction induces an isomorphism between the
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endomorphism algebras, where we need to take one of them with the opposite multiplication,
e.g.,

(6.8) End(Indnn−1)
opp ∼−→ End(Resn−1n ).

We have algebra homomorphisms

Zn−1(n)→ End(Indnn−1)
opp,End(Resn−1n )

that intertwine (6.8) – for the readers who understand how (6.8) is constructed, this is a
very useful exercise.

In particular, the element Jn ∈ Zn−1(n) gives functor endomorphisms of both Indnn−1,Resn−1n .
Both these functors map to categories, where objects are finite dimensional vector spaces
over C. Once we equip such a vector space with a linear operator, we can decompose it into
the direct sum of generalized eigenspaces. So, say, for a CSn−1-module, we can decompose
Indnn−1M as

⊕
a∈C(Indnn−1M)a, where the summands are the generalized eigenspaces for the

operator J∗n. All eigenvalues are integers by Corollary 6.10.
Here are two claims that the readers are strongly encouraged to check, both follow from

the observation that J∗n gives a functor endomorphism:

• all (Indnn−1M)a are CSn-submodules (zero if a is not an integer);
• for all a ∈ C, the assignment M 7→ (Indnn−1M)a is a part of a functor CSn−1 -mod→
CSn -mod.

So we can say that the functor Indnn−1 decomposes as the direct sum of functors (Indnn−1 •)a.
The same is true for the restriction functor: Resn−1n =

⊕
a∈Z(Resn−1n )a. Lemma 6.9 implies

that (Indnn−1 •)a is still the left adjoint functor of (Resn−1n •)a.

Exercise 6.12. Each of the functors (Resn−1n •)a and (Indnn−1 •)a sends an irreducible module
to an irreducible module or 0.

6.4. Characteristic p. Now we proceed to a brief discussion of the representation theory
of FSn, where F is an algebraically closed field of characteristic p (in fact, one doesn’t need
to impose the condition of being algebraically closed). This is usually referred to as the
modular (from “modulo p”) Representation theory.

We can still consider Jn ∈ FSn.

Lemma 6.13. The element Jn acts on any FSn-module with eigenvalues in Fp.

Proof. Consider Jn ∈ ZSn. We claim that there is F ∈ Z[x] that is the product of factors of
the form (x−m) for m ∈ Z such that F (Jn) = 0. Indeed, Jn acts on every CSn-module with
integral eigenvalues, this follows, for example, from Corollary 5.9. Apply this to the regular
module CSn and take F to be the minimal polynomial of the operator of left multiplication
by Jn. We get F (Jn) = 0 in CSn, and hence in ZSn.

Of course, F (Jn) = 0 in FSn as well. The possible eigenvalues of Jn ∈ FSn are the
reductions mod p of the roots of F . Those are integers. This finishes the proof. �

Example 6.14. Unlike in characteristic 0, Jn may fail to act by a diagonalizable operator
even on an irreducible module. For example, let p = 2 and V be the reflection representation
of FS3, still defined as the subspace {(x1, x2, x3)|x1 + x2 + x3 = 0} ⊂ F3. It is irreducible.
The operator J3 = (1, 3) + (2, 3) sends (x1, x2, x3) to (x3 +x1, x2 +x3, x2 +x1) = (x2, x1, x3).
It has a unique (up to rescaling) eigenvector (1, 1, 0) (with eigenvalue 1).
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For the same reason as in Remark 6.11, we have the functor decompositions

Resn−1n =
⊕
a∈Fp

(Resn−1n •)a, Indnn−1 =
⊕
a∈Fp

(Indnn−1 •)a.

For example, for an FSn-moduleM , the FSn−1-module Resn−1n M)a is the generalized eigenspace
for Jn with eigenvalue a in M .

Unlike in Exercise 6.12, even if M is irreducible, (Resn−1n M)a may be reducible. We
see this already in Example 6.14: there is a unique irreducible FS2-module, and it is 1-
dimensional, while (Resn−1n M)1 = Resn−1n M is 2-dimensional. Nevertheless, there is the
following theorem whose proof uses the representation theory of degenerate affine Hecke
algebras. It is a special case of [Kl, Corollary 5.1.7, 5.3.2].

Theorem 6.15. Recall that F is an algebraically closed field of characteristic p. Let V be an
irreducible FSn-module. Pick a ∈ Fp such that (Resn−1n M)a is nonzero. Then this module
has the unique irreducible submodule, the unique irreducible quotient module, and these two
irreducible modules are isomorphic.

We will return to the discussion of the modular representation theory of Sn, which is an
active area of research, later in the course.
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