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IVAN LOSEV

There are six problems worth 25 points total. You need to score 15 points
to get the maximal score. You can use previous problems (or previous parts)
in your solutions of the subsequent problems (or subsequent parts of the same
problem) and get full credit even if you haven’t solved the problems/parts you
have used. Partial credit is given. The italized text serves as comments to a
problem, but it is not a part of the problem.

The solutions need to be submitted via Canvas. Hand-written solutions are
accepted but please make sure they are readable.

Problem 1, 3pts. Use Remark 2.12 in [RT1] (the claim that the algebra Zn−1(n) is gener-
ated by Zn(n) and Jn) as well as other results from Section 2 to prove the following claim.
Let V be an irreducible CSn-module. Every eigenspace for Jn in V is an irreducible CSn−1-
module (where by an eigenspace we mean the span of all eigenvectors with a given eigenvalue),
equivalently, Jn acts by different scalars on different irreducible CSn−1-submodules. Hint:
do revisit the proof of Theorem 3.6; note that the result of the problem follows from the final
classification, but you are not supposed to use that.

The remaining problems in this problem set concern various aspects of the structure and
the representation theory of the degenerate affine Hecke algebras.

Problem 2, 4pts total. The goal of this problem is to construct a suitable representation
of H(2) (and also of H(d)). We start with constructing a representation of H(2) in C[x1, x2].

a, 3pts) Consider the representation of S2 in C[x1, x2], where the non-unit element s ∈ S2

acts by [s.f ](x1, x2) = f(x2, x1). Show that the assignment

X1.f := x1f,X2.f := x2f, T.f := sf +
sf − f
x1 − x2

extends to a representation of H(2) in the space C[x1, x2].
b, 1pt) Generalize this construction and construct a representation ofH(d) in C[x1, . . . , xd].

Yes, you should check the details. You can use Remark 4.4 in the lecture.

Problem 3, 4pts total. The goal of this problem is to establish a vector space basis in
H(2) – and in more general H(d).

a, 3pts) Show that the monomials Xd1
1 X

d2
2 σ with d1, d2 > 0, σ ∈ S2, form a basis in

H(2). Hint: to prove the linear independence show that the images of these monomials
in EndC(C[x1, x2]) are linearly independent. This is one of many examples how looking at
representations allows to determine vector space bases for algebras given by generators and
relations.

b, 1pt) This is harder. State and prove the direct analog of a) for H(d).

1



2 IVAN LOSEV

Problem 4, 5pts. Now we construct a central subalgebra of H(2) – and of the general H(d).
Notice that we have a natural algebra homomorphism C[X1, X2] → H(2), and Problem 3
implies it is injective.

a, 3pts) Show that the symmetric polynomials in X1, X2 are central in H(2).
b, 1pt) State and prove a direct analog of a) for H(d).
Hint: it’s not so hard to prove a) computationally with some basic knowledge about sym-

metric polynomials, while for b) this won’t really work. What will work is again considering
the representation in C[x1, . . . , xd].

c, 1pt) Use b) to show that the center of CSd is spanned as a vector space by the symmetric
polynomials in J1, . . . , Jd. Hint: use a homomorphism H(d)→ CSd.

Problem 5, 6pts total. The goal of this problem is to establish some basic results about
the representations of H(d). We’ll need the following well-known fact that you don’t need to
prove. Let C[x1, . . . , xd]sym denote the subalgebra of symmetric polynomials inside C[x1, . . . , xd].
Then C[x1, . . . , xd] is a free C[x1, . . . , xd]sym-module of rank d!. We’ll discuss possible bases
in an “Aside” to this problem set, after Problem 6.

a, 1pt) Prove that all irreducible representations of H(d) are finite dimensional. You can
use Proposition 2.10 in [RT0].

b, 1pt) Fix an element α := (a1, . . . , ad) ∈ Cd. Further, consider the maximal ideal
mα ⊂ C[x1, . . . , xd]sym consisting of all symmetric polynomials vanishing at α. Finally,
set H(d)α := H(d)/H(d)mα. Prove that H(d)mα is a 2-sided ideal in H(d) and, moreover,
dimH(d)α = (d!)2. Further, show that all irreducible representations ofH(d) have dimension
at most d!.

In fact, most irreducible representations have dimension exactly d!. Here are some partial
results in this direction.

c, 2pts) Consider the H(d)-module

M(α) := H(d)⊗C[X1,...,Xn] C,
where C is the C[X1, . . . , Xd]-module with Xi acting by multiplication with ai. Assume that
ai − aj 6∈ {0,±1} for all i 6= j. Show that the module M(α) has the following properties:

(1) The elements X1, . . . , Xd act on M(α) by diagonalizable operators.
(2) Each simultaneous eigenspace is 1-dimensional, and the d-tuples of eigenvalues are

exactly the permutations of α.
(3) M(α) is irreducible.

Hint: you are allowed to use a variation of b) in Problem 3. You could also try to prove it
by constructing a suitable anti-automorphism of H(d).

d, 1pt) Show that under the assumptions of c), H(d)α is the matrix algebra of size d!.
Here is a related – and deeper – fact: if a1 = . . . = ad, then M(α) is irreducible – and
H(d)α is the matrix algebra of size d!. This holds over any algebraically closed field. This
result is very important, say, in the study of modular representations of symmetric groups.

e, 1pt) Show that the center of H(d) coincides with the subalgebra C[X1, . . . , Xd]sym.

Problem 6, 3pts total. The goal of this (harder) problem is to justify Remark 4.3 in
[RT1]. We will concentrate on the case when d = 2, although the general case is completely
analogous. We note that for any f in the center C[X1, . . . , Xd]sym of H(d), the localization
H(d)[f−1] of the C[X1, . . . , Xd]sym-module H(d) has the natural algebra structure. You do
not need to prove this.
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a, 1pt) Let f = (X1 − X2)
2(X1 − X2 − 1)(X2 − X1 − 1) ∈ C[X1, X2]sym. Show that

H(2)[f−1] is isomorphic to Mat2(C[X1, X2]sym[f−1]) as a C[X1, X2]sym[f−1]-algebra.
b, 1pt) Use a) to show that every two-sided ideal in H(2) has a nonzero intersection with

the subalgebra C[X1, X2]sym.
c, 1pt) Use b) to show that the intersection of the kernels of the homomorphisms H(2)→

Zi−1(i+ 1) from Section 4.1 in [RT1] (for all i > 2) is zero. In this sense the relations of the
algebra H(2) are exhaust the defining relations between Ji−1, Ji, (i−1, i) that are independent
of i.

Aside. Here we discuss the following result:
C[x1, . . . , xd] is a free rank d! module over C[x1, . . . , xd]sym, the subalgebra of symmetric

polynomials.
Here is an easy basis: xn1

1 . . . x
nd−1

d−1 with 0 6 ni 6 d − i. You could try to prove this is
indeed a basis – this is an elementary combinatorial problem.

There is also another, “better” and “more intelligent” choice of a basis: of Sd-harmonic
polynomials. Note that Sd acts on C[x1, . . . , xd] by permuting the variables, C[x1, . . . , xd] is
nothing else but the subalgebra of all invariant elements, hence the more common notation,
C[x1, . . . , xd]

Sd . One can ask to find an Sd-submodule V ⊂ C[x1, . . . , xd] such that the
multiplication map gives rise to an isomorphism

(1) C[x1, . . . , xd]
Sd ⊗ V ∼−→ C[x1, . . . , xd].

Note that in this case we automatically have dimV = d!.
We say that an element f ∈ C[x1, . . . , xd] is Sn-harmonic if g(∂1, . . . , ∂d)f = 0 for all

symmetric polynomials g with g(0) = 0, where ∂1, . . . , ∂d denote the partials. For example,
for d = 2, the polynomials 1, x1−x2 form a basis in the space of all Sd-harmonic polynomials.
And V := SpanC(1, x1−x2). A deeper general result says that the space V of all Sd-harmonic
polynomials satisfies (1).


