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IVAN LOSEV

There are four problems worth 25 points total. You need to score 15 points
to get the maximal score. You can use previous problems (or previous parts)
in your solutions of the subsequent problems (or subsequent parts of the same
problem) and get full credit even if you haven’t solved the problems/parts you
have used. Partial credit is given. The italized text serves as comments to a
problem, but it is not a part of the problem.

The solutions need to be submitted via Canvas. Hand-written solutions are
accepted but please make sure they are readable.

Problem 1, 6pts. This problem provides examples of dual Weyl modules. Let F denote
an algebraically closed field of characteristic p. Let n > 1 and G := SLn(F). We write
ω1, . . . , ωn−1 for the fundamental weights (Section 1 of Lecture 13). In your solutions you are
allowed to use all facts mentioned in the main body of the lectures (excluding the complement
sections). And it’s not confined to Lecture 17!

1, 3pts) Show that, for k = 1, . . . , n − 1, we have M(ωk) ∼= ΛkFn (constructed as the
quotient of (Fn)⊗k) and this module is irreducible.

2, 3pts) This is a harder part. Show that, for d > 0, we have M(dω1) ∼= F[x1, . . . , xn]d,
the space of homogeneous degree d polynomials, where G acts by linear changes of variables.
Hint: let P denote the subgroup of all matrices (xij) ∈ G with xn,1 = xn,2 = . . . = xn,n−1 = 0.
Observe that πdw0ω1 is restricted from an algebraic group homomorphism P → F× that we also
denote by πdw0ω1. Show that M(dω1) ∼= IndG

P πdw0ω1 – by stating and proving a transitivity
property for induction in this setting– and use this to show that M(dω1) ∼= F[x1, . . . , xn]d.

Problem 2, 7pts. Let Fq be a finite field, G = GLn(Fq), B the subgroup of all upper trian-
gular matrices, and T the subgroup of all diagonal matrices. We have the projection B � T
and so can view every T -representation as a B-representation. In Lecture 18 we have studied
the structure of IndG

B triv. In this problem our task is to understand the inductions from
general irreducible representations of T (viewed as representations of B). We write Hn(q)
for the Hecke algebra (C[B\G/B], ∗) with G = GLn(Fq). The set of irreducible representa-
tions Hom(T,C×) of T is identified with Hom(F×q ,C×)n (where Hom means the set of group
homomorphisms) with χ = (χ1, . . . , χn) sending t = diag(t1, . . . , tn) to χ1(t1) . . . χn(tn). So
W = Sn acts on this set of irreducible T -representations by permuting the components.

1, 1pt) Show that HomG(IndG
B χ, IndG

B χ
′) has basis labelled by elements w ∈ W such that

wχ = χ′.

2, 1pt) Deduce that if the entries of χ are pairwise distinct, then IndG
B χ is irreducible.

3, 1pt) Deduce that if χ′ is not conjugate to χ under the W -action, then IndG
B χ and

IndG
B χ
′ have no common irreducible summands.
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4, 2pts) Prove that if χ′ ∈ Wχ, then IndG
B χ
∼= IndG

B χ
′. Hint: handle the case of n = 2

first. Then prove the isomorphism for χ′ = sχ for s = (i, i + 1) using the transitivity of
induction with intermediate subgroup Ps, see Section 3 of Lecture 18. Conclude the proof.

5, 2pts) Suppose that χ has n1 entries χ1, n2 entries χ2, . . . , nk entries χk with n1 + . . .+
nk = n and pairwise distinct χ1, . . . , χk ∈ Hom(F×q ,C×). Identify the algebra EndG(IndG

B χ)

with
⊗k

i=1Hni
(q).

If we believe in a bijection between irreducible representations and conjugacy classes – and
we shouldn’t really – then this problem yields a classification of all G-irreps corresponding to
conjugacy classes with eigenvalues in F×q (and not in a field extension).

Problem 3, 6pts. In this problem we investigate the Okounkov-Vershik story for the Hecke
algebra of Sn. Consider the Hecke algebra Ht±1(Sn) := Ht(Sn)[t−1]. Note that we have the
chain of embeddings Ht±1(S1) ⊂ Ht±1(S2) ⊂ . . . ⊂ Ht±1(Sn). We start with an analog of the
JM element.

1, 1pt) Consider the element Jn(t) := Tn−1Tn−2 . . . T2T
2
1 T2 . . . Tn−1 ∈ Ht±1(Sn). Show that

it commutes with Ht±1(Sn−1).

2, 1pt) Show that Jn(t)− 1 ∈ (t− 1)Ht±1(Sn). Compute the image of (Jn(t)− 1)/(t− 1)
in Ht±1(Sn)/(t− 1)Ht±1(Sn) = ZSn.

Now we proceed to the (actual) affine Hecke algebra Haff
t±1 (n). Consider the Z[t±1]-algebra

Haff
t±1 (n) generated by the elements X±11 , . . . , X±1n , T1, . . . , Tn−1 with the following relations:

• The elements X1, . . . , Xn pairwise commute and XiX
−1
i = 1.

• The elements T1, . . . , Tn−1 satisfy the defining relations of generators of Ht±1(Sn).
• We have TiXj = XjTi if j − i 6= 0, 1, and TiXiTi = Xi+1.

3, 1pt) Construct an algebra isomorphism Haff
t±1 (n)/(X1 − 1) ∼= Ht±1(Sn) (we mod out the

two-sided ideal).

4, 1pt) Construct an algebra isomorphismHaff
t±1 (n)[t′]/(X2

1−(t′−1)X1−t′) ∼= Ht,t′(Bn)[t−1, t′−1]
of algebras over Z[t±1, t′±1], where before the localization we have the generic Hecke algebra
for the Weyl group of type Bn.

5, 2pts) Now we relate Haff
t±1 (n) with the degenerate affine Hecke algebra H(n) that was

the main hero of HW1. Similarly to that homework, one can show that the monomials
TwX

d1
1 . . . Xdn

n with di ∈ Z form a basis of Haff
t±1 (n), you can use this. Consider the local-

ization Haff
t±1 (n)[(t − 1)−1] and the Z[t±1]-subalgebra H̃t±1(n) generated by the T ′is and the

elements (Xi − 1)/(t− 1). Identify H̃t±1(n)/(t− 1)H̃t±1(n) with H(n). In this sense, H(n)
is a degeneration of the affine Hecke algebra.

Problem 4, 6pts. This problem deals with the Kazhdan-Lusztig basis Cw ∈ Hv(W ), w ∈
W := Sn.

1, 2pts) Let M be a free Z[v±1]-module with a finite basis H ′b, where b is in an labeling
set B. Suppose that B comes with a partial order, 6. Also suppose that M comes with a
Z[v±1]-semilinear involution •̄ satisfying H̄ ′b ∈ H ′b + SpanZ[v±1](H

′
b′ |b′ < b). Show that, for

each b ∈ B, there is a unique element C ′b ∈ H ′b + v SpanZ[v](H
′
b′|b′ < b) such that C̄ ′b = C ′b.

2, 2pts) Fix a simple reflection s. Consider the Z[v±1]-module CsHv(Sn). Show that the
elements H ′w := CsHw, where w runs over B := {w ∈ W |`(sw) > `(w)}, form a basis.
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Further, show that the bar-involution restricts to CsHv(Sn) and the corresponding element
C ′w equals Csw for all w ∈ B.

3, 2pts) Use 2) to show that Cw0 =
∑

w∈W v`(w)Hww0 .

Aside. We have the affine Hecke algebra Haff
t±1 (n) and also the Hecke algebra Haff (W (Ãn)).

The two are closely related. Namely, inside Zn we can consider the “root lattice” Λ0 con-
sisting of all n-tuples with zero sum of entries. A description of W (Ãn) in Section 2.1 of

Lecture 20 shows that W (Ãn)
∼−→ W n Λ0, where W = Sn. There is a deformed version of

this result. The Z[t±1]-span of the elements of the form TwX
d1
1 . . . Xdn

n with
∑
di = 0 is a

subalgebra. It turns out that this subalgebra is isomorphic to Ht±1(Ãn) (a.k.a. the Bern-
stein isomorphism). This is a general feature of the affine types: the objects (Kac-Moody
algebras, Weyl groups, Hecke algebras) have the general Kac-Moody realization as well as
the “loop realization”, compare to Section 3.1 of Lecture 20. This has various important
consequences, in particular, for the Langlands program...


