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1. Part 1

Our main references are [3], [1], and [5].

1.1. Equivariant Cohomology. Equivariant cohomology was introduced to help explore
the geometry of quotients X/G, where X is a space equipped with a G action. Here we are thinking

either X could be a smooth manifold and G a compact Lie group, or X could be projective algebraic

and G could be a reductive algebraic group.
The main difficulty in studying the quotient X/G comes from the possibility that G acts

on X in a non-free way. Borel’s idea to overcome this was to modify X by enlarging it with a

contractible, free G-space.

Definition 1.1. We say that a space E is a universal G space, if

• E carries a free G action.

• E is contractible

It is not hard to show that E is unique up to homotopy equivalence. Thus we pick a particular

universal G-space, and denote it EG.
We then consider the free G-space X × EG as a replacement for X. The quotient space

XG := (X × EG)/G is now a nice object (e.g. smooth manifold)

Definition 1.2. The equivariant cohomology of X, denoted HG(X), is defined to be the
ordinary cohomology of XG. i.e.

H∗
G(X) = H∗(XG)

The equivariant cohomology inherits many natural structures since it is defined as the ordi-

nary cohomology of a space associated to X.

• Since EG carries a free G-action, it has the structure of a principal G-bundle over the

quotient space BG := EG/G. The space BG is known to be a classifying space for
principal G-bundles, i.e. BunG(Y ) = [Y, BG].

• If G acts freely on X, then HG(X) = H(X ×G EG) = H(X/G × EG) = H(X/G). So

we recover the cohomology of the quotient if the action is free.
• if the G action on X is trivial, then HG(X) = H(X × EG/B) = H(X) ⊗ HG({pt}),

which is a free module over HG(pt).

• The projection maps from X × EG onto the two factors induce maps σ : XG → X/G,
and π : XG → BG. These spaces fit into the ‘mixing diagram’ of Borel and Cartan

X

��

X × EG
pr1oo

��

pr2 // EG

��
X/G XGσ

oo
π

// BG
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Using these maps, we can related the cohomolgy of the quotient X/G to the equivariant

cohomology via σ∗ : H(X/G) → HG(X). The map π : XG → BG defines a HG(pt) =

H(BG) module structure on HG(X) via π∗.
• The map π is a fibration with fiber X. For a chosen basepoint p ∈ BG, the inclusion of

the fiber at p, ι : X → XG induces a map ι∗ : HG(X) → H(X).

X

��

ι // XG

π

��
p // BG

• For a subgroup K ⊂ G, We have HG(G/K) = H(G/K×GEG) = H((G/K)/G×BK) =
HK(pt).

• If V is a vector bundle over X, such that there exists a lift of the the G action to one of

V , i.e. V is an equivariant vector bundle, then we can extend V to VG = (V ×EG)/G,
which is a vector bundle over XG. With this construction, we can define the equivariant

characteristic classes of V to be the characteristic classes of VG. i.e for the chern classes

ci, we define cG
i (V ) := ci(VG) ∈ H2i(XG) = H2i

G (X).

We will mainly be interested in the case where G = T = (C∗)n, an algebraic torus. Consider

C∞−{0}, this space is contractible and posesses a free C∗ action, thus EC∗ = C∞−{0} and BC∗ =
P∞. We often write this line bundle as L → P∞. We can easily see that B(C∗)n = (P∞)×n, and

E(C∗)n = L1⊕ · · · ⊕Ln, where Li is the pullback of this canonical bundle on the ith component.

We have HT (pt) = H(BT ) = Q[λ1, . . . , λn], where λi = −c1(Li) ∈ H2(BT ) ∼= Hom(T, C∗).
It is not hard to show that for a maximal torus T ⊂ G, we have HG(pt) = HT (pt)W , where

the Weyl group acts by the regular representation on the λi.

1.2. Example: HT (Pn). Here we will compute the T -equivariant cohomology of Pn, where
T = (C∗)n+1 acting on [z0 : · · · : zn] ∈ Pn via

(t0, . . . , tn).[z0 : · · · : zn] = [t−1
0 z0 : · · · : t−1

n zn]

We compute Pn
T = Pn ×T ET = Pn ×T (L0 ⊕ · · · ⊕ Ln) = P(L0 ⊕ · · · ⊕ Ln).

Pn // P(L0 ⊕ · · · ⊕ Ln) = Pn
T

��
BT

Thus we see that Pn
T is a bundle over BT with fiber Pn, as expected. We have the tautological

bundle U = OPn
T

(−1), with chern class h̃ = c1(U) ∈ H2
T (Pn). This fits into an exact sequence of

bundles over Pn
T

U → L0 ⊕ · · · ⊕ Ln → Q

We thus have the relation

cn+1(U∗ ⊗ (L0 ⊕ · · · ⊕ Ln)) = 0

or
nY

i=0

(h̃ + λi) = 0

And we find

HT (Pn) = Q[h̃, λ0, . . . , λn]/
nY

i=0

(h̃ + λi)

notice that this is a non-free module over HT (pt) = Q[λ0, . . . , λn]. If we restrict to the fiber, we

have ι∗h̃ = h, ι∗λi = 0, and so

ι∗HT (Pn) = Q[h]/hn+1 = H(Pn)

in particular, ι∗ is a surjection in this case.
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2. Part 2

2.1. Localization. Consider T a torus acting on X. Suppose the fixed point locus splits as a

disjoint union of connected components
S

Fi. The inclusion maps ιFi
: Fi → X are T -equivariant,

and induce maps

ι∗
F T

i
: HG(X) → HT (Fi) = H(F )⊗HT (pt)

Since F T
i → XT is an inclusion, we can also construct pushforwards

ιF T
i ∗

: Hk
T (Fi) → Hk+r

T (X)

where r is the codimension of F in X. Composing these two maps gives us the gysin operation

ι∗
F T

i
ιF T

i ∗
: Hk

T (Fi) → Hk+r
T (Fi)

which is known to coincide with the cup product with the equivariant Euler class (top Chern

class) of the normal bundle

(1) ι∗
F T

i
ιF T

i ∗
α = α ∪ EulerT (NFi

X)

Since HT := HT (pt) = Q[λ0, . . . , λn] is a polynomial ring, we consider its associated field of

fractions, i.e. rational functions, denoted RT .

Proposition 2.1 (Atiyah-Bott [1]). The equivariant Euler class EulerT (NFi
X) ∈ H(Fi)⊗

HT of the normal bundle NFi
X of a component Fi of the fixed point locus is invertible once we

localize to the field of fractions RT . i.e.

(EulerT (NFi
X))−1 exists in H(Fi)⊗Q RT

proof. Since the action of T on Fi is trivial, for any point x ∈ Fi, the normal bundle NFi
X|x

at x carries a representation of T . Thus we get a decomposition into eigen space corresponding

to the characters of T

NFi
X|x =

M
ρ∈Hom(T,C∗)

Vρ

Equivariantly, this meants that

NT
Fi

X|xT =
M

ρ∈Hom(T,C∗)

Vρ ⊗ Lρ

where Lρ is the line bundle on BT with character ρ. However, since the characters of T are rigid,

this decomposition must hold globally on all of Fi, thus

NT
Fi

X =
M

ρ∈Hom(T,C∗)

Vρ ⊗ Lρ

where Vρ is the eigen-subbundle of NFi
X with character ρ. Now if we let {xρ

j} be the chern roots

of Vρ, then we have

EulerT (NFi
X) =

Y
ρ

Y
j

(xρ
j + λρ)

If we can invert the λρ, we find

EulerT (NFi
X) =

Y
ρ

λ
rkVρ
ρ

Y
j

 
1 +

xρ
j

λρ

!

and we find

EulerT (NFi
X)−1 =

Y
ρ

λ
−rkVρ
ρ

Y
j

0@1−
xρ

j

λρ
+

 
xρ

j

λρ

!2

− . . .

1A ∈ H(Fi)⊗RT

where the expression in the brackets only contains finitely many terms since xρ
j ∈ H2(F ) is

nilpotent. �
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Using this, it is now easy to show (using eqn 1) that the map

φ :
M

i

H(Fi)⊗RT → HT (X)∨ =: HT (X)⊗HT
RT

given by

φ : {αi} 7→
X

i

ιF T
i ∗

αi

is an isomorphism of RT modules, with inverse

φ−1 : α 7→ {αi := (ι∗
F T

i
α) ∪ EulerT (NFi

X)−1}

Thus we have shown

Theorem 2.2 (Atiyah-Bott Localization Formula). For α̃ ∈ HT (X), we have

α̃ = φ ◦ φ−1(α) =
X

i

ιF T
i ∗

0@ ι∗
F T

i

α̃

EulerT (NFi
X)

1A
This localization statement expresses that any equivariant cohomology class α̃ ∈ HT (X) can

be reconstructed from its restrictions to the fixed point loci.
The full power of this theorem is realized when we try to compute integrals of certain coho-

mology classes on X.

Definition 2.3. We say a cohomology class α ∈ H(X) has an equivariant extension if there

exists a class α̃ ∈ HT (X) such that ι∗α̃ = α, where ι is the usual inclusion of a fiber.

We are interested in computing integrals of the form
R

X α, where α has an equivariant

extension. Recall the following diagram

X

��

ι // XT

π

��
p // BT

Given a class α̃ ∈ HT (X), we have a ‘push-pull’ formula for the above diagram

ev0

Z
XT /BT

α̃ =

Z
X

ι∗α̃ =

Z
X

α

where ev0 is the ‘evaluation at 0’ map ev0 = ι∗p : RT → H(pt) = Q, however this map is not well
defined for all rational functions in RT , only for those which are constant away from a discrete
set of points where they are undefined. From now on, we omit mention of ev0.

Next, we use the localization theorem, to pull back this integral to the fixed point set.

Z
XT /BT

α̃ =

Z
XT /BT

X
i

ιF T
i ∗

0@ ι∗
F T

i

α̃

EulerT (NFi
X)

1A
we can easily see that Z

XT /BT
ιF T

i ∗
β =

Z
F T

i /BT
β

so we arrive at

Proposition 2.4 (Atiyah-Bott Integration formula).

Z
X

α =

Z
XT /BT

α̃ =
X

i

Z
F T

i /BT

0@ ι∗
F T

i

α̃

EulerT (NFi
X)

1A
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2.2. Warm-up Examples. To see how this formula is useful, we consider a simple example

Proposition 2.5. Let T act on X with fixed point loci
S

Fi, then

χ(X) =
X

i

χ(Fi)

Proof. We have χ(X) =
R

X ctop(TX). Since X carries a T action, there is a natural lift to
an action on TX, thus we haveZ

X
ctop(TX) =

Z
XT /BT

cT
top(TX)

Localizing at the fixed point loci we haveZ
XT /BT

cT
top(TX) =

X
i

Z
F T

i /BT

ι∗
F T

i

cT
top(TX)

cT
top(NFi

X)

but naturality of the Chern classes we have

ι∗
F T

i
cT
top(TX) = cT

top(ι∗Fi
TX)

The exact sequence of equivariant bundles TFi → ι∗Fi
TX → NFi

X tells us that

cT
top(ι∗Fi

TX) = cT
top(TFi)c

T
top(NFi

X)

and soX
i

Z
F T

i /BT

ι∗
F T

i

cT
top(TX)

cT
top(NFi

X)
=
X

i

Z
F T

i /BT
cT
top(TFi) =

X
i

Z
Fi

ctop(TFi) =
X

i

χ(Fi)

�

For the previous example, we avoided the question of studying the equivariant geometry of
the fixed point sets by using an exact sequence. In general, we will have to compute the structure

of the equivariant normal bundles. For this next example, we reproduce a simple result using

localization techniques.

Proposition 2.6. Let h ∈ H2(Pn) be the hyperplane class, i.e h = c1(O(−1)). ThenZ
Pn

hn = 1

Proof. Consider the action of the torus T = (C∗)n+1 on Cn+1, given by

(t0, . . . , tn).(z0, . . . , zn) = (t−1
0 z0, . . . , t−1

n zn)

This descends to an action of T on Pn described in the previous section. The fixed points of this

action on Pn are the lines in Cn+1 given by

qi : z → (0, . . . ,
ith

z , . . . , 0)

Thus there are n + 1 fixed points, and so χ(Pn) =
P

i χ(pt) = n + 1 as expected. Now
since the fixed points are isolated points, we have NqiPn = TqiPn. Now we recall that the
tangent bundle to Pn is given by the bundle Hom(U, Cn+1/U), where U = O(−1). Thus

TqiPn = Hom(Cqi, Cn+1/Cqi). The weight of the T -representation of Cqi is λi, i.e. q∗i U = L∨i ,

and so the weights of Hom(Cqi, Cn+1/Cqi) = (Cqi)
∨⊗(Cn+1/Cqi) are {λi−λj}j 6=i. Furthermore,

we have

ι∗qi
h̃ = ι∗qi

c1(OPn
T

(−1)) = c1(ι∗qi
OPn

T
(−1)) = c1(L∨i ) = λi

. Now applying our localization theorem, we haveZ
Pn

hn =

Z
Pn

T
/BT

h̃n =
X

i

ι∗qi
h̃n

EulerT (TqiPn)
=
X

i

λn
iQ

j 6=i(λi − λj)
∈ RT

Now this expression gives us a degree 0 rational function, however, we know it must be equivalent
to a constant function. So we are free evaluate it by restricting to the subtorus λi = µi, where

{µi} are a set of n + 1 roots of unity. On this subtorus, we have the identityY
j 6=i

(µi − µj) = (n + 1)µn
i
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and so we find X
i

λn
iQ

j 6=i(λi − λj)
=
X

i

µn
i

(n + 1)µn
i

= 1

�

2.3. Gromov-Witten Invariants of a Quintic Hypersurface in a quintic threefold.
2.3.1. Set up. Here we want to compute some particular Gromov-Witten invariants of a

generic smooth quintic V in P4. This example is particularly interesting, as 3-dimensional Calabi-
Yau manifolds are important for 10d superstring theory compactifications.

We first compute the expected dimension of the moduli space, using

dimMg,n(X, β) = (g − 1)(dim X − 3)−
Z

β
ωX + n

So for our quintic three fold we have dim V = 3, [ωV ] = 0 since V is CY, and so the expected

dimension is

dimMg,n(V, β) = n

Our first example will be concerning M1 = M0,0(V, 1) where 1 = [line] ∈ H2(V ). This is known

to be a zero-dimensional smooth variety, consisting of finitely many points. The relevant GW

invariant is

N1 := 〈·〉V0,1 =

Z
M0,0(V,1)

1

Since the moduli space is smooth and equidimensional, this GW invariant agrees with the classical

enumerative invariant

n1 = # lines on smooth generic quintic

We will compute this number using localization techniques. We do so by using the embedding
i : V → P4, and the equivariant geometry of an associated Grassmanian of lines. We consider the

induced map on the moduli spaces of stable maps

i : M0,0(V, 1) →M0,0(P4, 1)

given by sending a curve C in V to its image i(V ) in P4. From an earlier talk, we know that the

compactified moduli space of degree 1 curves in Pn is given by the Grassmanian

M0,0(P4, 1) = Gr(2, 5)

Our goal is to pushforward the calculation of N1 from M1 to Gr(2, 5)Z
M1

1 =

Z
Gr(2,5)

i∗1

To compute i∗1, we need to express M1 as the zero set of some section of a vector bundle over
Gr(2, 5). Consider the tautological sequence of bundles on Y = Gr(2, 5)

0 → U
q→ O5

Y → Q → 0

Where [U → O5
Y ]p∈Y = [Up → C5] is the inclusion of the 2-plane Up in C5 defined by p. Now V is

given as the zero set of a degree 5 polynomial, i.e, a section s of Sym5(O∗Y ). Using the tautological

sequence, we can restrict the polynomial s to the fibers of U

s̄ = q∗s ∈ Γ(Sym5(U∗))

Now by construction, the zero set of s̄ is the subvariety of Y that consists of lines in P4 on which

the defining polynomial of V vanishes identically, i.e. the space of lines in V .

Z(s̄) = M1 ⊂ Y

With this construction, and with the additional knowledge that s̄ intersects the zero section of
Sym5(U∗) transversally (which is true when V smooth), we have the standard formula

i∗1 = ctop(Sym5(U∗)) ∈ Htop(Y )

I.e., the Euler class of the bundle F = Sym5(U∗) is Poincare dual to the homology class of the

zero locus of a generic section of F . Thus, we have set up the calculation we need to perform

〈·〉V0,1 =

Z
M0,0(V,1)

1 =

Z
Gr(2,5)

i∗1 =

Z
Gr(2,5)

ctop(Sym5(U∗))
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2.3.2. The Calculation. We are going to compute
R
Gr(2,5) ctop(Sym5(U∗)) using localization

techniques, by considering the obvious action of T = (C∗)5 on Y = Gr(2, 5). The fixed points of
this action are given by the planes

JI : (z1, z2) → (0, . . . ,
ith
1
z1 , . . . ,

ith
2
z2 , . . . , 0)

where I = {i1, i2} is a subset of {1, . . . , 5}, |I| = 2. It’s easy to see that J∗I U = L∨i2 ⊕L∨i2 , and so

the weights of J∗I Sym5(U∗) are

{aλi1 + (5− a)λi2}
5
a=0

Now since the fixed points are isolated, we know that NJI
Y = TJI

Y , and again we use TY =

Hom(U, C5/U), so

TJI
Y = ((Li1 ⊕ Li2 )⊗ (C5/(L∨i1 ⊕ L∨i2 ))

and thus the weights of T on TJI
Y are

{λi − λj}i∈I,j /∈I

With all of this equivariant data worked out, we can use our localization theorem to computeZ
Gr(2,5)

ctop(Sym5(U∗)) ==
X

I

ι∗JI
ctop(Sym5(U∗))

EulerT (TJI
Y )

=
X

I

Q5
a=0(aλi1 + (5− a)λi2 )Q

i∈I,j /∈I(λi − λj)
∈ RT

This time there is no obvious easy tricks to help us evaluate this rational function, however, with

computer assistance we can findX
I

Q5
a=0(aλi1 + (5− a)λi2 )Q

i∈I,j /∈I(λi − λj)
= 2875

and so, we find

N1 = 〈·〉V0,1 = 2875 = n1 = # lines on smooth generic quintic

2.4. Comments on higher degree case. In general, the moduli spaceMn,d = M0,n(V, d)

is not smooth, or equidimensional. However, Kontsevich [4] observed that is a smooth stack, and a

localization theorem could be applied to compute the associated GW invariants. He embeds Mn,d

into M0,n(P4, d) as before, but now greater care needs to be taken in identifying the fixed points,

as stable maps can degenerate into reducible curves with multiple components. He develops a
combinitorical description of the fixed point set, and the weights of the T action on the normal

bundle for each fixed point. He then employs a version of the localization theorem for smooth

stacks, and computes (in particular)

N4 =

Z
[M0,0(V,4)]

1 =
15517926796875

64

The fractional nature of this invariant reflects the non-equidimensionality and orbifold nature of
the moduli space. To relate this number to enumerative invariants, one needs to analyse how

multiple degree covers of curves contribute to these numbers.

Theorem 2.7 (Aspinwall-Morrison Formula). Let C ⊂ V be a rigid embedded smooth curve
in a CY threefold V . The the contribution of degree d multiple covers of C to 〈·〉V

0,d[C]
is d−3.

Using this, (and some extra information about instanton numbers in low degree), the following

should hold

N4 =
X
d|4

d−3n(4/d)

where nd is the number of smooth curves of degree d in V . It was known classically that n1 = 2875

(as we just computed) and that n2 = 609250. Kontsevich’s calculation then produces

15517926796875

64
= n4 + 2−3609250 + 4−32875

which yields

n4 = 242467530000

an enumerative invariant which was not known classically (the Schubert calculus is overwhelming),
but was predicted using mirror symmetry in [2]. Thus Kontsevich’s result verified the predictions

of mirror symmetry in this case.



8 RYAN MICKLER

References

[1] M. F. Atiyah and R. Bott. The moment map and equivariant cohomology. Topology, 23(1):1–28, 1984.
[2] Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. An exactly soluble superconformal

theory from a mirror pair of Calabi-Yau manifolds. Phys. Lett. B, 258(1-2):118–126, 1991.
[3] David A. Cox and Sheldon Katz. Mirror symmetry and algebraic geometry, volume 68 of Mathematical Surveys

and Monographs. American Mathematical Society, Providence, RI, 1999.
[4] Maxim Kontsevich. Enumeration of rational curves via torus actions. In The moduli space of curves (Texel

Island, 1994), volume 129 of Progr. Math., pages 335–368. Birkhäuser Boston, Boston, MA, 1995.
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