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1 Motivation

The goal of these lectures is to give an introduction to equivariant algebraic K-theory.
Out motivation will be to provide a proof of the classical Weyl character formula using a
localization result. Our primary reference is the book of Chriss-Ginzburg [1], chapters 5
and 6.

Proposition 1.1 (Weyl). Let Lλ be the irreducible representation of G, of highest weight
λ. Then the following formula holds

Ch(Lλ) =
∑

w∈W (−1)`(w)ew(λ+ρ)−ρ∏
α∈R+(1− e−α)

: h → C∗ (1.1)

where ρ = 1
2

∑
α is half the sum of the positive roots, and W is the Weyl group of G.

Our ground field is always C, and unless otherwise specified, G is a complex reductive
algebraic group. The action of G on varieties X is always assumed to be algebraic.
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2 Basic Definitions

For any abelian category C, we can form its Grothendieck group K(C), also known as the
K-theory of C. This is defined to be the free abelian group generated by isomorphism
classes of objects in C, modulo the relations that whenever we have an exact sequence
0 → V1 → V2 → V3 → 0 of objects in C, we have have the relation [V1]− [V2] + [V3] = 0 in
K(C).

Some classic examples:

• C = V ectG(X), the category of G-equivariant vector bundles on a topological space
X. K(V ectG(X)) is known as equivariant (topological) K-theory.

• C = Coh(X), the category of coherent sheaves on an algebraic variety X. This is
called algebraic K-theory

If we wish to generalize this last example to the equivariant setting, we have to be
careful about what it means for a sheaf to be equivariant.

2.1 Equivariant Sheaves

Let X be a G-variety. This means that we have an action map a : G × X → X, which
satisfies the property

a ◦ (m× IdX) = a ◦ (IdG × a) : G×G×X → X, (2.1)

where m : G×G → G is the group multiplication.

Definition 2.1 (5.1.6). A sheaf F on a G-variety X is called equivariant if

1) There is a given isomorphism I of sheaves on G×X,

I : a∗F ' p∗F (2.2)

At the level of open sets, this gives isomorphisms I(g,U) : F(gU) ' F(U).

2) We want the isomorphisms Ig to satisfy the cocycle conditions

I(gh,U) = I(h,U) ◦ I(g,hU) : F(ghU) ' F(U).

• The isomorphism I restricted to {e} ×X gives the identity.

Two basic examples of equivariant sheaves we will be considering:

• The sheaf of G-invariant functions on X.

• O(V ), the sheaf of sections of an equivariant vector bundle V → X. These are
precisely the locally free sheaves. This is equivalent to a bundle equipped with an
action G× V → V , which is fiberwise linear, and covers the action of G on X.
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• i∗OY , where i : Y → X is the inclusion of the G-stable subvariety Y . In particular,
we’ll be focusing on the case Y = XG, the fixed point locus. We’ll come back to this
example later.

It will also be important to note that is F is an equivariant coherent sheaf on X, then
the space Γ(X,F) of global sections has a natural structure of a G-module. This can be
seen by the following sequence of ismorphisms

Γ(X,F) a∗→ Γ(G×X, a∗F) I→ Γ(G×X, p∗F) = C[G]⊗ Γ(X,F) (2.3)

2.2 Structure of K-theory

We want to show that G-equivariant coherent sheaves have resolutions consisting of equiv-
ariant locally free sheaves. First, we need to know that there are “sufficiently many”
G-equivariant line bundles on any smooth G-variety.

Proposition 2.2. If X is a smooth G-variety, where G is a connected linear algebraic
group, and L is an arbitrary line bundle over X, then some positive power L⊗n admits a
G-equivariant structure.

Proof. See [1] Thm 5.1.9

Proposition 2.3. If X is a smooth quasi-projective G-equivariant variety, then

1) Any G-equivariant coherent sheaf is the quotient of a G-equivariant locally free sheaf.

2) Any G-equivariant sheaf on X has a finite, locally free, G-equivariant resolution.

Outline. We assume X is projective, the quasi-projective case follows by standard embed-
ding arguments.

• Show that there exists an equivariant projective embedding (X, G) → (P(V ), GL(V )).
Do this by taking the space of sections of an ample equivariant line bundle L on X.
For x ∈ X, let Hx ⊂ V = Γ(X,L) be the hyperplane of functions vanishing at X.
These maps give an equivariant embedding X → P(V ∗).

• Let F be an equivariant sheaf. Let L be an equivariant line bundle. For n large
enough, the sheaf F ⊗L×n is generated by global sections. Then the map Γ(X,F ⊗
L⊗n)⊗ L⊗(−n) =: F1 → F is surjective, yielding 1).

• Iterate the previous argument on F1, to yield a an equivariant resolution · · · →
F2 → F1 → F . By Hilbert’s syzygy theorem, this resolution can be terminated at
ker(Fn → Fn−1).

With this, we define KG(X) = K(CohG(X)), where CohG(X) is the abelian category
of G-equivariant coherent sheaves on X.

Consider X = ∗. Then a G-equivariant sheaf on X is just a G-vector space, i.e
CohG(∗) = Rep(G), and KG(∗) = R(G), the representation ring of G.
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2.3 Functorality of K-theory

Given a G-equivariant map f : Y → X, we will now define various morphisms between
K-groups of X and Y . If a functor on the category of coherent sheaves is exact, then it
automatically descends to K-theory.

2.3.1 Tensor Products

There is an exact functor � : CohG(X)× CohG(Y ) → CohG(X × Y ), which maps

� : (F , E) 7→ p∗Y F ⊗OX×Y
p∗Y E

This descends to K theory, and is called the external tensor product, and defines a R(G) =
KG(∗) module structure on KG(X).

If X is a smooth variety, the diagonal embedding ∆ : X → X × X gives an exact
functor ∆∗ : CohG(X×X) → CohG(X). Combining with the external tensor product, the
map ⊗ : KG(X)⊗KG(X) → KG(X), given by

⊗ : F ⊗ F ′ 7→ ∆∗(F � F ′)

turns KG(X) into a commutative, associative R(G) algebra.

2.3.2 Flat Morphism

If f is flat morphism of varieties, e.g. an open embedding, then we consider the usual sheaf
theoretic inverse image functor

f∗ : CohG(X) → CohG(Y ), F 7→ f∗F := OY ⊗f∗OX
f∗F

Since f was a flat morphism this functor is exact, so it descends to K-theory. Thus we get
a pullback map

f∗ : KG(X) → KG(Y )

2.3.3 Closed Embedding

Now, suppose instead we are given a G-equivariant closed embedding f : Y → X, e.g,
inclusion of the fixed point locus Y = XG. Let IY ⊂ OX be the defining ideal of Y inside
X. The restriction map f∗ : Coh(X) → Coh(Y ), given by F 7→ F/IY F ∼= f∗OY ⊗OX

F is
not (in general) an exact functor, so it does not descend to a map in K-theory. We avoid
this complication, by only considering the case where both X and Y are smooth varieties,
and proceed as follows. Pick a locally free resolution E• of f∗OY (or, instead a resolution
of F)

· · · → E1 → E0 → f∗OY → 0

Thus, for each i, the sheaf Ei ⊗OX
F is coherent on X. Furthermore, the cohomology of

the complex
· · · → E1 ⊗OX

F → E0 ⊗OX
F → 0
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denoted by Hi(E• ⊗OX
F), may be viewed as coherent f∗OY modules, and hence as OY

modules. We define the class

f∗[F ] =
∑

(−1)i[Hi(E• ⊗OX
F)] =

∑
(−1)i[TorOX

i (f∗OY ,F)] ∈ KG(Y ) (2.4)

Obviously, the r.h.s. is independent of the choice of equivariant resolution.

2.3.4 Pushforward

Let f : X → Y be a proper G-equivariant morphism, and we no longer require X and Y

to be smooth. We have the natural direct image functor f∗ : Coh(X) → Coh(Y ). This
functor is left exact, but not right exact. For a short exact sequence of coherent sheaves
0 → E → F → G → 0 on X, we get a long exact sequence of G-equivariant coherent
sheaves on Y

0 → f∗E → f∗F → f∗G → R1f∗E → R1f∗F → R1f∗G → R2f∗E → · · · (2.5)

which terminates at finite length. Thus, if we define f∗[F ] =
∑

(−1)i[Rif∗F ] ∈ KG(X),
we have f∗([E ]− [F ] + [G]) = (f∗[E ]− f∗[F ] + f∗[G]), and thus f∗ descends to a well defined
map f∗ : KG(X) → KG(Y ). If we are pushing forward to a point, f : X → ∗, then this
map is

f∗[F ] =
∑

(−1)i[H i(X,F)]

2.3.5 Induction

Let H ⊂ G, be a closed subgroup, and X and H-variety. Then there is an isomorphism

KH(X) ∼= KG(G×H X). (2.6)

Here we note that G×H X can be given the structure of an algebraic variety. Firstly, the
projection G×X → G, gives a flat map G×H X → G/H, with fiber X. Thus, given a G-
equivariant sheaf F on G×H X, we can restrict it to X over the basepoint eH ∈ G/H. This
restriction map res : KG(G ×H X) → KH(X), has an inverse given as follows. Consider
the projection onto the second factor p : G×X → X, and let F be a H-equivariant sheaf
on X. Then the pullback f∗F is H equivariant with respect to the diagonal H action on
G × X. Then we use equivariant descent in the étale topology to show that this sheaf
descends to a G-equivariant sheaf given by an induction functor indG

HF on G ×H X. In
particular, if X = ∗, then we get an isomorphism

R(H) = KH(∗) ∼= KG(G/H) (2.7)

which is given by the usual induction and restriction maps.

2.4 Example: The K-theory of the flag variety

Recall the flag variety. Given a connected complex semisimple group G, with Lie algebra
g, we consider Borel subgroups B, i.e. a maximal solvable subgroups, B ⊂ G , with Lie
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algebra b ⊂ g. Denote the space of all such Borel algebras B. It is easy to see that G

acts transitively on B by conjugation, and the stabilizer of any such group is isomorphic
to some fixed B, hence B ∼= G/B. This space is called the flag variety of G. Here G now
acts on G/B by left multiplication. Our immediate goal is to work out the equivariant
K-theory KG(B).

First, some conventions. For any particular Borel b, we get a decomposition g =
n− ⊕ b = n− ⊕ h⊕ n+. Let us make the following (rather unusual) choice of positive roots
R+ ⊂ Hom(T, C∗): we declare the weights of the adjoint T action on b to be the negative
roots. We do this, for the following reason. The tangent space TbB is given by g/b ∼= n−.
Thus the weights of the T action on the tangent space TbB are precisely given by the
positive roots.

For any character λ ∈ Hom(T, C∗), we can form an equivariant line bundle Lλ → B
as follows. Since B/[B,B] ∼= T , we can extend λ to a character of B. Set Lλ = G×B Cλ,
where B acts on Cλ with character lambda. The map (g, z) → g/B ∈ G/B gives Lλ

the structure of a G-equivariant line bundle over B. Furthermore, any equivariant line
bundle on B is isomorphic to some Lλ, by looking at the fiber above some particular Borel.
Extending this map by linearity we get a map R(T ) → KG(B), which we will show is an
isomorphism of R(G)-modules. Since B ∼= G/B, we use 2.7 to get

KG(B) ∼= KG(G/B) ∼= K(B) ∼= R(B) ∼= R(T ) (2.8)

Note that R(G) = R(T )W , so in particular KG(B) is a free R(G) module of rank |W |.

3 The Thom Isomorphism

The Thom isomorphism relates the K-theory of a smooth variety X, with the K-theory of
the total space of a vector bundle V over X.

3.1 The Koszul Resolution

Let π : V → X be a (G-equivariant) vector bundle, and i : X → V be the inclusion of the
zero section. We we will construct a resolution of the sheaf i∗OX . Consider the following
complex of vector bundles on the total space V

· · · → π∗(Λ2V ∨) → π∗(Λ1V ∨) → OV → 0 (3.1)

The differentials at over a point v ∈ V , is given by contraction with v, ie.

f1∧ · · · ∧fj 7→
∑

(−1)k〈v, fk〉f1∧ · · · ∧f̌k∧ · · · ∧fj (3.2)

We can easily check that this complex is exact everywhere in each fiber in V , except at the
origins 0 ∈ Vx. Thus this complex has one dimensional cohomology in degree 0, supported
precisely at the image of the zero section. Thus this complex is a resolution of i∗OX . We
define the element

λ(V ∨) =
∑

(−1)j [Λj(V ∨)] ∈ KG(X) (3.3)
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so that the relation i∗OX = π∗λ(V ∨) holds in KG(V ). Now, on the other hand, since
π∗λ(V ∨) is a resolution of the zero section, we can use it to define a restriction map from
sheaves on V , to sheaves supported on the zero section. For F a sheaf on V , following 2.4,
we have

[i∗F ] =
∑

(−1)iH i(V, π∗ΛV ∨ ⊗F) ∈ KG(X) (3.4)

We now have the following important K-theoretic version of the Thom isomorphism.

Proposition 3.1. Let V → X be a bundle as before, and F ∈ KG(X). Then we have the
following equalities:

i∗(π∗F) = F , i∗(i∗F) = λ(E∨)⊗F , (3.5)

Proof. For the first statement, we want to compute the cohomology of π∗Λ•(V ∨)⊗ π∗F =
π∗(Λ•(V ∨)⊗F) over V . This complex is exact everywhere except at the i = 0 term, since
π∗F is constant along fibers of V , and the result follows. For the second statement, we
want to compute the cohomology of π∗Λ•(V ∨)⊗ i∗F = i∗(Λ•(V ∨)⊗F), a sheaf supported
on the zero section. Now in K-theory we have∑

i

(−1)i[Hi(X, Λ•(V ∨)⊗F)] =
∑

i

(−1)i[Λ•(V ∨)⊗F ]

= λ(V ∨)⊗ [F ]

4 The Localization Theorem

The localization theorem will tell us what happens when we restrict equivariant bundles
over X to the fixed point locus XG.

4.1 Fixed Point Loci

We begin with a well-known result.

Proposition 4.1. Let G be reductive, acting on smooth X, then the fixed point set XG is
a smooth subvariety of X.

Proof. See [1][5.11.1]

From now on, let T ⊂ G be an abelian reductive subgroup. Since X is smooth, we may
consider the normal bundle N = NMT M . Since T acts trivially on MT , it induces a linear
action on the fibers of this normal bundle, and so we get decomposition N = ⊕α∈R(T )Nα,
and thus N ∈ KT (MT ). Let i : XT → X be the inclusion of the fixed point set. We now
have the following extension of 3.1.

Lemma 4.2. For all β ∈ KT (MT ), we have

i∗i∗β = λ(N∨)⊗ β (4.1)
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We will primarily be interested in the following question: under what circumstances
can we invert the operation i∗i∗, i.e. when does λ(N∨)−1 exist? The answer is that it is
invertible, as long as we avoid certain irregular points in t.

4.2 Localization

Consider R(T ) the representation ring of T . We can think of this ring as a subring of
regular functions on T , by mapping a representation V to the function fV : a 7→ TrV (t).
For any point t ∈ T , we consider representations that do not vanish at t. These form a
multiplicative set, at which we can localize R(T ), to form the ring Rt. Likewise any R(T )
module can be localized Mt := Rt ⊗R(T ) M . For our purposes, we will be localizing the
KA(∗) = R(T ) module, KT (X).

Now, consider a variety X equipped with the trivial T action, and a vector bundle E

over it equipped with a fiberwise linear action of T . The bundle E has a decomposition
into characters of T ,

E =
⊕

µ∈Sp(E)

Eµ (4.2)

where Sp(E) is the set of all characters µ : T → C∗ which appear in any fiber of E. The
bundle Eµ ⊂ E is the eigenbundle of E corresponding to the weight µ. Since X has the
trivial A action, the bundle E gives us a class [E] ∈ KT (X) ∼= R(T )⊗K(X). Under this
isomorphism we have [E] =

∑
µ µ ⊗ [Eµ] ∈ R(T ) ⊗ K(X), where Eµ is thought of as a

non-equivariant vector bundle. We now consider the Koszul bundle 3.3 for equivariant E,
and investigate it’s invertibility.

First of all, consider the case where Sp(E) = {µ}, and Eµ is the trivial rank 1 bundle.
Then λ(E) = Λ0(E)−Λ1(E) = 1− µ. Clearly this function on A is invertible at all points
except those t ∈ T at which µ(t) = 1. Thus, if we work at a point at which µ(t) 6= 1, then
1− µ is an invertible function in the localized ring Rt. So now we have

Proposition 4.3. let t ∈ T be element such that µ(t) 6= 1 for all µ ∈ Sp(E). Then
multiplication by λ(E) induces an automorphism of the localized K-group KT (X)t.

Note that we can’t localize at all weights µ ∈ R(G), since this would result in removing
too many points from T .

Proof. First, we have the weight decomposition, E =
∑

µ∈Sp(E) µ ⊗ Eµ. Now consider

E0 =
∑

µ∈Sp(E) µ ⊗ Ork Eµ

X . This bundle has the same characters as E, but none of the
topology. We now need a lemma.

Lemma 4.4. Let E be a rank d vector bundle on a variety X, and Or
X the trivial rank r

bundle, then the operation of multiplication by E − Or
X is a nilpotent operator on K(X).

Specifically,
(E −Or

X)dim X+1 = 0 (4.3)

Thus we see that λ(E)−λ(E0) acts nilpotently in KT (X). However, λ(E0) =
∏

µ∈Sp(E)(1−
µ), and thus

λ(E) =
∏

µ∈Sp(E)

(1− µ) + nilpotent (4.4)
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as operators on KT (X). Hence if t ∈ T satisfies µ(t) 6= 1 for all µ, λ(E) is invertible.

So want to consider those points t ∈ T that aren’t in the vanishing locus of some set
of functions. These points are called regular.

For fixed t ∈ T , we say that X is t-regular if Xt = XT . This generalizes the notion of
a regular semisimple element t in a maximal torus, as such an elements generate a dense
set inside T . As before, let N = NXtX be the normal bundle to the inclusion Xt → X,
and let N = ⊕µ∈Sp(N)Nµ be its weight decomposition. Note that the statement that X is
t-regular is equivalent to µ(t) 6= 1 for all µ ∈ Sp(N), since the normal bundle NXAXt has
precisely those weights for which µ(t) = 1.

Thus, we arrive at

Corollary 4.5. If i : XT → X is the inclusion, and t is X-regular, then the induced map

i∗i∗ : KT (MT )t → KT (MT )t

(which is given by multiplication by λ(N∨)) is an isomorphism.

In fact, the localization theorem due to Thomason, says that once we localize, all
K-groups of X are concentrated at the fixed point locus XT .

Proposition 4.6 (Thomason). For an arbitrary T -variety X, which is t-regular, the in-
duced map i∗ : KT (Xt)t → KT (X)t is an isomorphism.

This powerful theorem allows us to compute the K-groups of various spaces (up to
localization), just by studying the fixed point loci. We won’t prove this, but a short proof
in the case of cellular fibrations is found in [1].

4.3 Pushforwards and Restriction

Assume t is X-regular. Denote K(X)⊗C as K(X, C), i.e. non-equivariant K-theory. Now
consider the following map rest : KT (X) → K(XT , C), given by

rest : F → evt

(
λ(N∨

XT X)−1 ⊗ i∗F
)

where evt is the evaluation map R(T ) → C, and we have used the isomorphism KT (XT ) ∼=
R(T )⊗K(XT ). If X = ∗, and V = α⊗Cn ∈ KT (∗) = R(T )⊗K(∗) is a T -bundle over it,
then rest(V ) = α(t)⊗ Cn ∈ K(∗, C).

With all that we have constructed before, we can find the inverse of rest, once we have
complexified.

Proposition 4.7. The map i∗ : K(XT , C) → KT (X, C) is the inverse to rest

Proof. We have
resti∗F = evt(λ(N∨)−1 ⊗ λ(N∨)⊗F) = evt(F) (4.5)
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Proposition 4.8. Let f : X → Y be an T -equivariant proper morphism of smooth T -
varieties, for which both of X and Y are t-regular. Then the following diagram commutes

KT (X)
f∗ //

rest

��

KT (Y )

rest

��
K(XT , C)

f∗
// K(Y T , C)

Proof. We first consider the inverses to rest, in the following diagram,

KT (X, C)t
f∗ // KT (Y, C)t

K(XT , C)

i∗

OO

f∗
// K(Y T , C)

i∗

OO

This commutes with due to functoriality of the push-forward. However, this diagram
consists of the vertical inverses of the diagram we want, after we complexify and localize
at t in the top row.

KT (X, C)t
f∗ //

rest

��

KT (Y, C)t

rest

��
K(XT , C)

f∗
// K(Y T , C)

Thus push forwards commute with restriction. We now apply this lemma to the case
in which we push-forward to a point, f : X → ∗, and we get the following Lefschetz fixed
point theorem.

Proposition 4.9. Let X be a smooth, t-regular, compact T -variety. Then for any vector
bundle V ∈ KT (X), we have∑

(−1)iTr
(
t;H i(X, V )

)
=

∑
(−1)iTr

(
t;H i(Xt, λ(N∨

Xt)−1 ⊗ V |Xt)
)

(4.6)

Proof. The map on the top row is f∗[V ] =
∑

(−1)i[H i(X, V )], write this as
∑

α⊗Cm(α) ∈
R(T )⊗K(∗, C), and m(α) is the multiplicity of α in the virtual representation f∗[V ]. Thus

restf∗[V ] =
∑

α(t)⊗ Cm(α)

=
∑

(−1)iTr
(
t;H i(X, V )

)
In other direction, we write rest[V ] =

∑
β(t)⊗ Vβ ∈ C⊗K(XT ), where β are the weights
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of T appearing in λ(N∨
Xt)−1 ⊗ V |Xt .

f∗rest[V ] =
∑

β(t)⊗ f∗Vβ

=
∑

β(t)⊗ Cm(β)

=
∑

(−1)iTr
(
t;H i(Xt, λ(N∨

Xt)−1 ⊗ V |Xt)
)

5 The Weyl Character Formula

The Weyl character formula gives a very useful way to compute the characters of finite-
dimensional irreducible representations of G. Here we will show that it follows quite nat-
urally from the localization formula applied to line bundles on the flag variety.

5.1 The Character Formula

Let [Lλ] ∈ KG(B) be the class of the line bundle. Pushing forward along the map p : B → ∗,
we get

p∗[Lλ] =
∑

i

(−1)i[H i(B, Lλ)] ∈ KG(∗) ∼= R(G) (5.1)

We will work at a regular element t ∈ T , so that Bt = BT , and also, BT is the set of Borel
subalgebras containting t. These are precisely given by BT = {bw := w(b)}w∈W . Since
the fixed points are isolated, the normal bundle to such a point is it’s tangent bundle, and
we can easily see that TbwB = g/bw

∼= n−w , and thus the dual to the normal bundle is the
cotangent bundle is n+

w = w(n+). The characters of T that appear in NbwB are precisely
ewα, for α ∈ R+ the positive weights.

Thus we see that
λ(N∨

bw
B) =

∏
α∈R+

(1− e−wα) ∈ R(T )

Now, since all the fixed points are isolated, Bt = {bw : w ∈ W}, the Lefschetz fixed point
formula (4.6) gives us the character of the virtual representation∑

i

(−1)iTr(t, H i(B, Lλ)) =
∑

w∈W

Tr
(
t;λ(N∨

bw
)−1 ⊗ Lλ|bw

)
(5.2)

Now by construction, the element Lλ|bw ∈ R(T ) is given by ewλ. Thus, the character is

∑
w∈W

ewλ∏
α∈R+(1− e−wα)

(t) (5.3)

Now, we perform the standard tricks. Let ρ = 1
2

∑
α∈R+ α, then we have the identity∏

α∈R+

(1− e−α) = e−ρ
∏

α∈R+

(eα/2 − e−α/2) =: e−ρ∆ (5.4)
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It is easy to check that if s is a simple reflection in W , then s∆ = −∆ (s flips the sign of
one positive root, and permutes the rest). Hence w∆ = (−1)`(w)∆, and so the denominator
in our character formula is∏

α∈R+

(1− e−wα) = w(e−ρ∆) = e−wρ(−1)`(w)∆ = e−wρ(−1)`(w)eρ
∏

α∈R+

(1− e−α) (5.5)

Thus we arrive at

∑
i

(−1)iTr(t, H i(B, Lλ)) =
∑

w∈W (−1)`(w)ew(λ+ρ)−ρ∏
α∈R+(1− e−α)

(t) (5.6)

The finish off the proof of our main claim, we now result to the classical

Proposition 5.1 (Borel-Weil-Bott). If λ is a dominant weight, then

• the space H0(B, Lλ) is a simple G-module with highest weight w0(λ), i.e H0(B, Lλ) =
Vw0(λ), where w0 is the longest element in W .

• All higher cohomologies vanish, i.e. H i(B, Lλ) = 0, for i > 0.

However, with our choice of positive roots, irreducible representations are classified
by anti-dominant weights λ, this is equivalent to w0(λ) being dominant. So using the
geometric choice of roots, we see that H0(B, Lλ) ∼= Vλ.
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