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1 Motivation

The goal of these lectures is to give an introduction to equivariant algebraic K-theory.
Out motivation will be to provide a proof of the classical Weyl character formula using a
localization result. Our primary reference is the book of Chriss-Ginzburg [1], chapters 5
and 6.

Proposition 1.1 (Weyl). Let Ly be the irreducible representation of G, of highest weight
A. Then the following formula holds

zwew(_l)f(w)ew(/\+p)—p

Ch(LA) B H €R+(1 — e 9)

:h—-C (1.1)

where p = %Za is half the sum of the positive roots, and W is the Weyl group of G.

Our ground field is always C, and unless otherwise specified, G is a complex reductive
algebraic group. The action of G on varieties X is always assumed to be algebraic.



2 Basic Definitions

For any abelian category C, we can form its Grothendieck group K (C), also known as the
K-theory of C. This is defined to be the free abelian group generated by isomorphism
classes of objects in C, modulo the relations that whenever we have an exact sequence
0— Vi — Vo — V3 — 0 of objects in C, we have have the relation [Vi] — [Va] + [V3] = 0 in
K(C).

Some classic examples:

o C =Vectg(X), the category of G-equivariant vector bundles on a topological space
X. K(Vectg(X)) is known as equivariant (topological) K-theory.

e C = Coh(X), the category of coherent sheaves on an algebraic variety X. This is
called algebraic K-theory

If we wish to generalize this last example to the equivariant setting, we have to be
careful about what it means for a sheaf to be equivariant.

2.1 Equivariant Sheaves

Let X be a G-variety. This means that we have an action map a : G x X — X, which
satisfies the property

ao(mxIdy)=ao(ldg xa):GxGxX — X, (2.1)
where m : G X G — @ is the group multiplication.

Definition 2.1 (5.1.6). A sheaf F on a G-variety X is called equivariant if

1) There is a given isomorphism I of sheaves on G x X,
I:a"F ~p*F (2.2)
At the level of open sets, this gives isomorphisms I gy : F(gU) ~ F(U).
2) We want the isomorphisms I, to satisfy the cocycle conditions

I(gh,U) = I(h,U) o I(g,hU) : f(ghU) ~ f(U)

e The isomorphism I restricted to {e} x X gives the identity.
Two basic examples of equivariant sheaves we will be considering;:
e The sheaf of G-invariant functions on X.

e O(V), the sheaf of sections of an equivariant vector bundle V' — X. These are
precisely the locally free sheaves. This is equivalent to a bundle equipped with an
action G x V' — V, which is fiberwise linear, and covers the action of G on X.



e i,Oy, where i : Y — X is the inclusion of the G-stable subvariety Y. In particular,
we’ll be focusing on the case Y = X, the fixed point locus. We’ll come back to this
example later.

It will also be important to note that is F is an equivariant coherent sheaf on X, then
the space I'(X, F) of global sections has a natural structure of a G-module. This can be
seen by the following sequence of ismorphisms

I'(X,F) S T(G x X,a*F) 5 T(G x X,p*F) = C[G] @ T(X, F) (2.3)

2.2 Structure of K-theory

We want to show that G-equivariant coherent sheaves have resolutions consisting of equiv-
ariant locally free sheaves. First, we need to know that there are “sufficiently many”
G-equivariant line bundles on any smooth G-variety.

Proposition 2.2. If X is a smooth G-variety, where G is a connected linear algebraic
group, and L is an arbitrary line bundle over X, then some positive power LE™ admits a
G-equivariant structure.

Proof. See [1] Thm 5.1.9 O
Proposition 2.3. If X is a smooth quasi-projective G-equivariant variety, then
1) Any G-equivariant coherent sheaf is the quotient of a G-equivariant locally free sheaf.
2) Any G-equivariant sheaf on X has a finite, locally free, G-equivariant resolution.

Outline. We assume X is projective, the quasi-projective case follows by standard embed-
ding arguments.

e Show that there exists an equivariant projective embedding (X, G) — (P(V), GL(V)).
Do this by taking the space of sections of an ample equivariant line bundle £ on X.
For x € X, let H, C V =T(X, L) be the hyperplane of functions vanishing at X.
These maps give an equivariant embedding X — P(V*).

e Let F be an equivariant sheaf. Let £ be an equivariant line bundle. For n large
enough, the sheaf 7 ® £*™ is generated by global sections. Then the map I'(X, F ®
L8 @ L2 = F| — F is surjective, yielding 1).

e Iterate the previous argument on F!, to yield a an equivariant resolution --- —
F? — F!' — F. By Hilbert’s syzygy theorem, this resolution can be terminated at
ker(F" — Fn1).

O

With this, we define Kg(X) = K(Cohg(X)), where Cohg(X) is the abelian category

of G-equivariant coherent sheaves on X.

Consider X = *. Then a G-equivariant sheaf on X is just a G-vector space, i.e
Cohg(x) = Rep(G), and Kg(*) = R(G), the representation ring of G.



2.3 Functorality of K-theory

Given a G-equivariant map f : Y — X, we will now define various morphisms between
K-groups of X and Y. If a functor on the category of coherent sheaves is exact, then it
automatically descends to K-theory.

2.3.1 Tensor Products
There is an exact functor X : Cohg(X) x Cohg(Y) — Cohg(X x Y), which maps

X:(F, &) — pyF @0xyy PYE

This descends to K theory, and is called the external tensor product, and defines a R(G) =
K¢ (*) module structure on Kg(X).

If X is a smooth variety, the diagonal embedding A : X — X x X gives an exact
functor A* : Cohg(X x X) — Cohg(X). Combining with the external tensor product, the
map ® : Kg(X) ® Kg(X) — Kg(X), given by

@: FQF — A"(FRF)
turns K¢ (X) into a commutative, associative R(G) algebra.

2.3.2 Flat Morphism

If f is flat morphism of varieties, e.g. an open embedding, then we consider the usual sheaf
theoretic inverse image functor

[ Coh%(X) — Coh®(Y),  Fi [*F = Oy ®pe0y [*F

Since f was a flat morphism this functor is exact, so it descends to K-theory. Thus we get
a pullback map
[T Ka(X) — Ka(Y)

2.3.3 Closed Embedding

Now, suppose instead we are given a G-equivariant closed embedding f : ¥ — X, e.g,
inclusion of the fixed point locus Y = X, Let Zy C Ox be the defining ideal of Y inside
X. The restriction map f*: Coh(X) — Coh(Y), given by F — F/Iy F = f.Oy Qo F is
not (in general) an exact functor, so it does not descend to a map in K-theory. We avoid
this complication, by only considering the case where both X and Y are smooth varieties,
and proceed as follows. Pick a locally free resolution E*® of f,Oy (or, instead a resolution
of F)
--—>E1—>EO—>f*Oy—>O

Thus, for each i, the sheaf E? ®oy F is coherent on X. Furthermore, the cohomology of
the complex
= E'®oy F— E°®0y F — 0



denoted by H(E® ®0, F), may be viewed as coherent f.Oy modules, and hence as Oy
modules. We define the class

FIF =D (-1 H(E® @0, F) =Y (-1)[Tord* (£.0y, F)] € Ka(Y) (2.4)
Obviously, the r.h.s. is independent of the choice of equivariant resolution.

2.3.4 Pushforward

Let f : X — Y be a proper G-equivariant morphism, and we no longer require X and Y
to be smooth. We have the natural direct image functor f, : Coh(X) — Coh(Y). This
functor is left exact, but not right exact. For a short exact sequence of coherent sheaves
0 —-& —F — G — 0on X, we get a long exact sequence of G-equivariant coherent
sheaves on Y

0— fif — foF — f.G — R f.6 — R f.F — R .G — R*f,.E — --- (2.5)

which terminates at finite length. Thus, if we define fi[F] = > (—1)[R'f.F] € Kg(X),
we have f.([] — [F|+[G]) = (f«[€] — f<«[F] + f«[G]), and thus f, descends to a well defined
map fx : Kq(X) — Kg(Y). If we are pushing forward to a point, f : X — %, then this
map is

FF] =) (F1)'[HI(X, F)]
2.3.5 Induction

Let H C G, be a closed subgroup, and X and H-variety. Then there is an isomorphism
Kp(X) =2 Ko(G xg X). (2.6)

Here we note that G x g X can be given the structure of an algebraic variety. Firstly, the
projection G x X — G, gives a flat map G xg X — G/H, with fiber X. Thus, given a G-
equivariant sheaf F on G x iy X, we can restrict it to X over the basepoint eH € G/H. This
restriction map res : Kg(G xg X) — Kg(X), has an inverse given as follows. Consider
the projection onto the second factor p: G x X — X, and let F be a H-equivariant sheaf
on X. Then the pullback f*F is H equivariant with respect to the diagonal H action on
G x X. Then we use equivariant descent in the étale topology to show that this sheaf
descends to a G-equivariant sheaf given by an induction functor ind%]—" on G xpg X. In
particular, if X = %, then we get an isomorphism

R(H) = Ky (+) = Ko(G/H) (2.7)
which is given by the usual induction and restriction maps.

2.4 Example: The K-theory of the flag variety

Recall the flag variety. Given a connected complex semisimple group G, with Lie algebra
g, we consider Borel subgroups B, i.e. a maximal solvable subgroups, B C G , with Lie



algebra b C g. Denote the space of all such Borel algebras B. It is easy to see that G
acts transitively on B by conjugation, and the stabilizer of any such group is isomorphic
to some fixed B, hence B = G/B. This space is called the flag variety of G. Here G now
acts on G/B by left multiplication. Our immediate goal is to work out the equivariant
K-theory K¢ (B).

First, some conventions. For any particular Borel b, we get a decomposition g =
n@®b=n" ®hdnT. Let us make the following (rather unusual) choice of positive roots
Rt C Hom(T,C*): we declare the weights of the adjoint T' action on b to be the negative
roots. We do this, for the following reason. The tangent space TpB is given by g/b = n~.
Thus the weights of the T action on the tangent space Ty,B are precisely given by the
positive roots.

For any character A € Hom(7,C*), we can form an equivariant line bundle Ly — B
as follows. Since B/[B, B] = T, we can extend X to a character of B. Set Ly = G xp Cy,
where B acts on Cy with character lambda. The map (g,2) — g/B € G/B gives L)
the structure of a G-equivariant line bundle over B. Furthermore, any equivariant line
bundle on B is isomorphic to some Ly, by looking at the fiber above some particular Borel.
Extending this map by linearity we get a map R(T) — Kg(B), which we will show is an
isomorphism of R(G)-modules. Since B = G/B, we use 2.7 to get

Kq(B) 2 Kg(G/B) = K(B) = R(B) = R(T) (2.8)

Note that R(G) = R(T)W, so in particular K¢ (B) is a free R(G) module of rank |W]|.

3 The Thom Isomorphism

The Thom isomorphism relates the K-theory of a smooth variety X, with the K-theory of
the total space of a vector bundle V over X.

3.1 The Koszul Resolution

Let 7 : V — X be a (G-equivariant) vector bundle, and ¢ : X — V be the inclusion of the
zero section. We we will construct a resolution of the sheaf i,Ox. Consider the following
complex of vector bundles on the total space V'

c = T (AVY) = 7 (ATVY) - Oy — 0 (3.1)
The differentials at over a point v € V, is given by contraction with v, ie.

PN A S DR, f) AN Afeh - A S (3.2)

We can easily check that this complex is exact everywhere in each fiber in V', except at the
origins 0 € V,,. Thus this complex has one dimensional cohomology in degree 0, supported
precisely at the image of the zero section. Thus this complex is a resolution of i,Ox. We

define the element
AVY) =D (1[N (VY)] € Kg(X) (3.3)



so that the relation i,Ox = 7*A(V") holds in Kg(V). Now, on the other hand, since
T*A(VY) is a resolution of the zero section, we can use it to define a restriction map from
sheaves on V', to sheaves supported on the zero section. For F a sheaf on V', following 2.4,
we have

[i*F] =Y (-1 H (V,7*AVY @ F) € Ka(X) (3.4)
We now have the following important K-theoretic version of the Thom isomorphism.
Proposition 3.1. Let V — X be a bundle as before, and F € Kg(X). Then we have the

following equalities:
i"(m*F) = F, i*(i.F) = MEY) @ F, (3.5)

Proof. For the first statement, we want to compute the cohomology of 7*A*(VY) @ n*F =
7 (A*(VY)® F) over V. This complex is exact everywhere except at the i = 0 term, since
7*F is constant along fibers of V', and the result follows. For the second statement, we
want to compute the cohomology of 7*A*(VY) @ i, F = i, (A*(VY) ® F), a sheaf supported
on the zero section. Now in K-theory we have

S (D) H(X A V)@ F) =Y (-1 A (VY) @ F]

% 7

= AVY) @ [7]

4 The Localization Theorem

The localization theorem will tell us what happens when we restrict equivariant bundles
over X to the fixed point locus X€.

4.1 Fixed Point Loci

We begin with a well-known result.

Proposition 4.1. Let G be reductive, acting on smooth X, then the fized point set X is

a smooth subvariety of X.
Proof. See [1][5.11.1] O

From now on, let T" C G be an abelian reductive subgroup. Since X is smooth, we may
consider the normal bundle N = N,;r M. Since T acts trivially on M1 it induces a linear
action on the fibers of this normal bundle, and so we get decomposition N = @,¢cr(7)Na,
and thus N € KT(M7T). Let i : XT — X be the inclusion of the fixed point set. We now

have the following extension of 3.1.

Lemma 4.2. For all 3 € KT(MT), we have

i*i,3=AN")® B (4.1)



We will primarily be interested in the following question: under what circumstances
can we invert the operation i*i,, i.e. when does A(NY)~! exist? The answer is that it is
invertible, as long as we avoid certain irregular points in t.

4.2 Localization

Consider R(T) the representation ring of 7. We can think of this ring as a subring of
regular functions on 7', by mapping a representation V' to the function fy : a — Try(¢).
For any point ¢ € T, we consider representations that do not vanish at t. These form a
multiplicative set, at which we can localize R(T), to form the ring R;. Likewise any R(T)
module can be localized M; := Ry ®p(r) M. For our purposes, we will be localizing the
K4 (%) = R(T) module, K7(X).

Now, consider a variety X equipped with the trivial T action, and a vector bundle F
over it equipped with a fiberwise linear action of 7. The bundle E has a decomposition
into characters of T',

E= @ E. (4.2)

pESP(E)

where Sp(FE) is the set of all characters p : T — C* which appear in any fiber of E. The
bundle F,, C E is the eigenbundle of E corresponding to the weight p. Since X has the
trivial A action, the bundle E gives us a class [E] € KT(X) = R(T) ® K(X). Under this
isomorphism we have [E] = > p® [Ey,] € R(T) ® K(X), where Ej, is thought of as a
non-equivariant vector bundle. We now consider the Koszul bundle 3.3 for equivariant F,
and investigate it’s invertibility.

First of all, consider the case where Sp(E) = {u}, and E, is the trivial rank 1 bundle.
Then A(E) = A°(E) — A(E) = 1 — u. Clearly this function on A is invertible at all points
except those t € T at which pu(t) = 1. Thus, if we work at a point at which pu(t) # 1, then
1 — p is an invertible function in the localized ring R;. So now we have

Proposition 4.3. let t € T be element such that p(t) # 1 for all p € Sp(E). Then
multiplication by N(E) induces an automorphism of the localized K-group K (X);.

Note that we can’t localize at all weights p € R(G), since this would result in removing
too many points from 7.

Proof. First, we have the weight decomposition, £ = ZMGS}?(
rk E,

Ey = Zue spp) i ® Ox . This bundle has the same characters as £, but none of the

By M ® E,. Now consider

topology. We now need a lemma.

Lemma 4.4. Let E be a rank d vector bundle on a variety X, and O% the trivial rank r
bundle, then the operation of multiplication by E — O is a nilpotent operator on K(X).
Specifically,

(E — O%)dmX+l — g (4.3)

Thus we see that A(E)—A(Ejp) acts nilpotently in K7(X). However, A(Eo) = [[,eg,(m) (1

1), and thus

AME) = H (1 — p) + nilpotent (4.4)
pESp(E)



as operators on K7(X). Hence if t € T satisfies u(t) # 1 for all u, A(E) is invertible. [

So want to consider those points t € T that aren’t in the vanishing locus of some set
of functions. These points are called regular.

For fixed t € T, we say that X is t-regular if X* = X7, This generalizes the notion of
a regular semisimple element ¢ in a maximal torus, as such an elements generate a dense
set inside T. As before, let N = Ny+X be the normal bundle to the inclusion X! — X,
and let N = @, cgpnv) Ny be its weight decomposition. Note that the statement that X is
t-regular is equivalent to u(t) # 1 for all u € Sp(N), since the normal bundle Nya X" has
precisely those weights for which u(t) = 1.

Thus, we arrive at

Corollary 4.5. Ifi: X7 — X is the inclusion, and t is X -reqular, then the induced map
iy : Kp(MT), — Kp(M7T),
(which is given by multiplication by A(N')) is an isomorphism.

In fact, the localization theorem due to Thomason, says that once we localize, all
K-groups of X are concentrated at the fixed point locus X 7.

Proposition 4.6 (Thomason). For an arbitrary T-variety X, which is t-regular, the in-
duced map iy : Kp(Xt); — Kp(X); is an isomorphism.

This powerful theorem allows us to compute the K-groups of various spaces (up to
localization), just by studying the fixed point loci. We won’t prove this, but a short proof
in the case of cellular fibrations is found in [1].

4.3 Pushforwards and Restriction
Assume t is X-regular. Denote K(X)®C as K(X,C), i.e. non-equivariant K-theory. Now
consider the following map res; : K7(X) — K(XT,C), given by

resy : F — evy (A(]V;éTX)_1 ® i*F)

where ev; is the evaluation map R(T') — C, and we have used the isomorphism Kp(X7) =
RT)®K(XT). f X =%, and V =a®C" € Kp(*) = R(T) ® K (%) is a T-bundle over it,
then res; (V) = a(t) ® C" € K(x,C).

With all that we have constructed before, we can find the inverse of res;, once we have
complexified.

Proposition 4.7. The map i, : K(XT,C) — Kr(X,C) is the inverse to res;

Proof. We have
resiixF = ev(A(NY) 1 @ A(NY) ® F) = evy(F) (4.5)



Proposition 4.8. Let f : X — Y be an T-equivariant proper morphism of smooth T'-
varieties, for which both of X and Y are t-reqular. Then the following diagram commutes

Kr(X) —L Kp(Y)

rest \L lTeSt

K(XT7 (C) T) K(YT) (C)

Proof. We first consider the inverses to res;, in the following diagram,

Kp(X,C); L K7 (Y,C),

K(XT C) — KT C)

This commutes with due to functoriality of the push-forward. However, this diagram
consists of the vertical inverses of the diagram we want, after we complexify and localize
at ¢ in the top row.

KT(X, (C)t Hf* KT(K C)t

rest \L lrest

K(XT7(C) ? K(YTv C)
L]

Thus push forwards commute with restriction. We now apply this lemma to the case
in which we push-forward to a point, f : X — %, and we get the following Lefschetz fixed
point theorem.

Proposition 4.9. Let X be a smooth, t-reqular, compact T-variety. Then for any vector
bundle V € KT (X), we have

S (=D)'Te (H(X, V) =D (=1)Tr (6 H/(X,AMNY) T @ Vixr) (4.6)

Proof. The map on the top row is f,[V] = S_(=1)}[H*(X, V)], write this as 3" a®C™®) ¢
R(T)® K (*,C), and m(«) is the multiplicity of « in the virtual representation f,[V]. Thus

rescfV] =) a(t) @ C™
= (-1)'Tr (6 H'(X,V))

In other direction, we write res;[V] = 3" 8(t) ® V3 € C® K(XT), where 8 are the weights

~10 -



of T appearing in A(Ny.,) "' @ V|xt.

faresi[V] = Zﬁt ®f*Vﬁ
=Y Bt)yecm?®
= 371" (6 HU (X ANY) @ Vixe))

5 The Weyl Character Formula

The Weyl character formula gives a very useful way to compute the characters of finite-
dimensional irreducible representations of G. Here we will show that it follows quite nat-
urally from the localization formula applied to line bundles on the flag variety.

5.1 The Character Formula

Let [Ly] € Kg(B) be the class of the line bundle. Pushing forward along the map p : B — x,
we get

pe[Ln] =Y (1)'[H'(B, Ly)] € K%(x) = R(G) (5.1)
i
We will work at a regular element ¢ € T, so that B! = BT, and also, BT is the set of Borel
subalgebras containting t. These are precisely given by BT = {b, := w(b)},ew. Since
the fixed points are isolated, the normal bundle to such a point is it’s tangent bundle, and
we can easily see that Ty, B = g/b,, = n,,, and thus the dual to the normal bundle is the
cotangent bundle is njf, = w(n™). The characters of T' that appear in Ny B are precisely
eV, for o € R the positive weights.
Thus we see that

AN B) = J] @—e™) e R(T)

a€ERT

Now, since all the fixed points are isolated, Bt = {b,, : w € W}, the Lefschetz fixed point
formula (4.6) gives us the character of the virtual representation

> (—1)'Te(t, H(B,Ly)) = > Tr (5 AN,) ' @ Lals,,) (5.2)
i weW

Now by construction, the element Ly |p, € R(T) is given by e“*. Thus, the character is

ewA

wew aers (1 —e7%)

(t) (5-3)

Now, we perform the standard tricks. Let p = %Z aci+ @, then we have the identity

H (1—e*)=¢e"” H (ea/2 — e_a/Q) =:e A (5.4)

a€RT* a€Rt

- 11 -



It is easy to check that if s is a simple reflection in W, then sA = —A (s flips the sign of
one positive root, and permutes the rest). Hence wA = (—1)““’)A, and so the denominator
in our character formula is

[T @=e) =w(e?A) =e(-1)WA = er(-1)™er ] 1) (5.5)

a€Rt aeRt

Thus we arrive at

Zwew(—l)e(w)ew(’\“)*p
[locp+ (1 —e™)

> (1) Te(t, H (B, Ly)) =

7

(t) (5.6)

The finish off the proof of our main claim, we now result to the classical
Proposition 5.1 (Borel-Weil-Bott). If A is a dominant weight, then

e the space HO(B, L)) is a simple G-module with highest weight wo(\), i.e H*(B, Ly) =
Viwo(n), where wy is the longest element in W.

o All higher cohomologies vanish, i.e. H'(B,Ly) =0, fori > 0.

However, with our choice of positive roots, irreducible representations are classified
by anti-dominant weights A, this is equivalent to wy(\) being dominant. So using the
geometric choice of roots, we see that HO(B, Ly) = V).
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